

#### Flexeme: Untangling Commits Using Lexical Flows



Profir-Petru Pârțachi<sup>+</sup>



Santanu Kumar Dash<sup>‡</sup>



Miltos Allamanis•



Earl T. Barr<sup>+</sup>

† Department of Computer Science, University College London, London, United Kingdom
 ‡ Department of Computer Science, University of Surrey, Guildford, Surrey, United Kingdom
 Microsoft Research, Cambridge, Cambridgeshire, United Kingdom



# **Tangled Commits**

The features implemented by these two (atomic) patches are unrelated.

```
Tangled patches introduce bias.
```

#### @@ -127,31 +137,32 @@ namespace Terminal { this.barItems = barItems; this.host = host; for (int p = 0; p < Frame.Width-2; p++) + ColorScheme = Colors.Menu if (item == null) CanFocus = true: 2a Driver.AddSpecial(SpecialChar.HLine public override void Redraw(Rect region) Driver.AddRune(Driver.HLine): else 1b - Driver.SetAttribute(Colors.Menu.Normal): Driver, AddCh(' DrawFrame(region, true); Driver.AddRune(' '); + Driver.SetAttribute(ColorScheme.Normal); if (item == null) + DrawFrame(region, padding: 0, fill: true); continue: for (int i = 0; Move(2, i + 1); i < barItems.Children.Length;</pre> DrawHotString(item.Title, i++) 1d i == current? Colors.Menu.HotFoc var item = barItems.Children [i]; Colors.Menu.HotNormal Move(1, i+1); == current ? Colors.Menu.Focus : Driver.SetAttribute( Colors.Menu.Normal); 1c i == current? ColorScheme.HotFocus item == null ? Colors.Base.Focus ColorScheme.HotNormal == current ? Colors.Menu.Focus : i == current ? ColorScheme.Focus : Colors.Menu.Normal ColorScheme.Normal); Driver.SetAttribute( item == null ? Colors.Base.Focus : i == current ? ColorScheme.Focus : ColorScheme, Normal

+ );

#### Why care about tangled commits?

Because atomic commits

Enable bug localisation techniques, as simple as git bisect, or as complex as statistical and neural approaches.

Provide a cleaner interlinking between feature implementations, and their histories, to requirements.

#### Flexeme at a Glance







Start from Le and Pattison's MVICFG<sup>[1]</sup>.

Augment with Data-flows to get to the  $\delta$ -PDG.

Augment with Name-flows to get to the  $\delta$ -NFG.

Separate the  $\delta$ -NFG into a collection of graphs.

Re-cluster using graph similarity.





[1] Wei Le and Shannon D. Pattison. 2014. Patch verification via Multiversion Interprocedural Control Flow Graphs. Proc. 36th Int. Conf. Softw. Eng. - ICSE 2014(2014), 1047–1058. https://doi.org/10.1145/2568225.2568304

#### Weisfeiler-Lehman Graph Kernel

A graph kernel captures the notion of similarity – given a particular kernel, we can embed graphs into a vector space where the dot product captures our desired similarity.

Weisfeiler-Lehman (WL) is a meta-kernel based on the graph isomorphism test under the same name.

Employing the rooted sub-trees kernel under the WL framework captures the intuition, in our setting, of similar downstream "behaviours".



## **Commit Untangling Baselines**

State-of-the-art at the time of our writing:

- DU-chains based approach (Barnett et al.<sup>[2]</sup>)
- Confidence Voting + Agglomerative Clustering (Herzig et al.<sup>[3,4]</sup>)

# Almost all information needed for both approaches is contained in the $\delta\text{-NFG}.$

[2] Mike Barnett, Christian Bird, João Brunet, and Shuvendu K. Lahiri. 2015. Helping developers help themselves: Automatic decomposition of code review changesets. Proc. - Int. Conf. Softw. Eng.1, August 2014 (2015), 134–144. <u>https://doi.org/10.1109/ICSE.2015.35</u>
[3] Kim Herzig, Sascha Just, and Andreas Zeller. 2016. The impact of tangled code changes on defect prediction models. Empir. Softw. Eng.21, 2 (2016), 303–336. <u>https://doi.org/10.1007/s10664-015-9376-6</u>
[4] Kim Herzig and Andreas Zeller. 2013. The impact of tangled code changes. IEEE Int. Work. Conf. Min. Softw. Repos.(2013), 121–130. <u>https://doi.org/10.1109/MSR.2013.6624018</u>



### Reproducing Barnett et al.

- Starting from the  $\delta$ -PDG keep only dataflow.
- Separate flow by "kill" statements to obtain DU-chains.
- This is naturally intersected with diff-hunks by the  $\delta\text{-PDG}$  construction.
- The result is DU-chains with some nodes annotated as changed.

Changes are related if:

- 1. They are both changed uses of the same definition.
- 2. One is a changed use and the other is its changed definition.



### Reproducing Herzig et al.

The approach by Herzig et al. makes use of the following confidence voters: file distance, package distance, call graph, change couplings, data dependency.

We adapt package distance to namespace distance as our projects are in C#.

We precompute co-occurrence matrices for files for change couplings.



#### **Experimental Set-up**

We focus on comparing the untangling method and not the construction of auxiliary structures:

we only consider untangling time for runtime results.

We measure accuracy as:

 $A = \frac{\text{#Correctly labeled nodes}}{\text{#Nodes in graph}}.$ 

We always apply the Hungarian Algorithm to find a maximal accuracy permutation of labels.



### **Corpus Generation**

We consider commits that:

- 1. Have been committed by the same developer within 14 days of each other with no other commit by the same developer in between them.
- 2. Change namespaces whose names have a large prefix match.
- 3. Contain files that are frequently changed together.
- 4. Do not contain certain keywords (such as 'fix', 'bug', 'feature', 'implement') multiple times.

We then attempt to git cherry-pick the selected candidates on the parent of the chain.



#### **Corpus Statistics**

Table 1: Project statistics. The last revision indicates the commit at which we performed the 'git clone'.

| Project         | LOC    | # of Commits | Last revision |
|-----------------|--------|--------------|---------------|
| Commandline     | 11602  | 1556         | 67f77e1       |
| CommonMark      | 14613  | 418          | f3d5453       |
| Hangfire        | 40263  | 2889         | 175207c       |
| Humanizer       | 56357  | 1647         | 604ebcc       |
| Lean            | 242974 | 7086         | 71bc0fa       |
| Nancy           | 79192  | 5497         | dbdbe94       |
| Newtonsoft.Json | 71704  | 299          | 4f8832a       |
| Ninject         | 13656  | 784          | 6a7ed2b       |
| RestSharp       | 16233  | 1440         | b52b9be       |

#### Table 2: Successfully tangled commits.

| Project         | Concerns |     |         |  |  |  |  |
|-----------------|----------|-----|---------|--|--|--|--|
|                 | 2        | 3   | Overall |  |  |  |  |
| Commandline     | 308      | 32  | 340     |  |  |  |  |
| CommonMark      | 52       | 0   | 52      |  |  |  |  |
| Hangfire        | 229      | 87  | 316     |  |  |  |  |
| Humanizer       | 85       | 4   | 89      |  |  |  |  |
| Lean            | 154      | 24  | 178     |  |  |  |  |
| Nancy           | 284      | 67  | 351     |  |  |  |  |
| Newtonsoft.Json | 84       | 7   | 91      |  |  |  |  |
| Ninject         | 82       | 0   | 82      |  |  |  |  |
| RestSharp       | 95       | 18  | 113     |  |  |  |  |
| Overall         | 1373     | 239 | 1612    |  |  |  |  |



#### **Results: Accuracy**

| Project Name    | Barnett <i>et al.</i> [2] |      |         | Herzig et al. [6] |      |         |  |
|-----------------|---------------------------|------|---------|-------------------|------|---------|--|
|                 | 2                         | 3    | Overall | 2                 | 3    | Overall |  |
| Commandline     | 0.18                      | 0.21 | 0.19    | 0.67              | 0.48 | 0.64    |  |
| CommonMark      | 0.20                      | *    | 0.20    | 0.65              | *    | 0.65    |  |
| Hangfire        | 0.16                      | 0.13 | 0.15    | 0.70              | 0.54 | 0.64    |  |
| Humanizer       | 0.18                      | 0.31 | 0.18    | 0.64              | 0.42 | 0.62    |  |
| Lean            | 0.19                      | 0.12 | 0.18    | 0.69              | 0.62 | 0.69    |  |
| Nancy           | 0.09                      | 0.08 | 0.09    | 0.70              | 0.56 | 0.67    |  |
| Newtonsoft.Json | 0.15                      | 0.11 | 0.15    | 0.71              | 0.56 | 0.71    |  |
| Ninject         | 0.14                      | *    | 0.14    | 0.57              | *    | 0.57    |  |
| RestSharp       | 0.12                      | 0.14 | 0.12    | 0.71              | 0.69 | 0.70    |  |
| Overall         | 0.14                      | 0.11 | 0.13    | 0.69              | 0.62 | 0.67    |  |



#### **Results: Runtime**

| Project Name    | Barnett et al. [2] |      |         | Herzig et al. [6]    |                      |                      |
|-----------------|--------------------|------|---------|----------------------|----------------------|----------------------|
|                 | 2                  | 3    | Overall | 2                    | 3                    | Overall              |
| Commandline     | 0.10               | 8.51 | 0.12    | 10.51                | 8.56                 | 9.26                 |
| CommonMark      | 2.56               | *    | 2.56    | $1.96 \times 10^{3}$ | *                    | $1.96 \times 10^{3}$ |
| Hangfire        | 1.15               | 4.97 | 1.95    | $1.30 \times 10^{4}$ | $5.57 \times 10^{4}$ | $1.72 \times 10^{4}$ |
| Humanizer       | 0.44               | 0.23 | 0.41    | 40.62                | 49.53                | 44.44                |
| Lean            | 1.00               | 1.59 | 1.28    | 345.05               | 173.58               | 288.35               |
| Nancy           | 2.06               | 5.63 | 2.42    | 570.57               | $1.29 \times 10^{3}$ | 600.16               |
| Newtonsoft.Json | 2.14               | 6.42 | 2.35    | 225.62               | 510.77               | 230.49               |
| Ninject         | 1.25               | *    | 1.25    | 81.53                | *                    | 81.53                |
| RestSharp       | 0.74               | 1.25 | 0.78    | 46.22                | 222.98               | 72.09                |
| Overall         | 1.02               | 5.02 | 1.41    | 81.53                | 647.99               | 117.35               |



#### **Results: Accuracy**

| Project Name    | Barnett <i>et al</i> . [2] |      |         | Heddle ( $\delta$ -NFG + WL) |      |         |  |
|-----------------|----------------------------|------|---------|------------------------------|------|---------|--|
|                 | 2                          | 3    | Overall | 2                            | 3    | Overall |  |
| Commandline     | 0.18                       | 0.21 | 0.19    | 0.82                         | 0.92 | 0.82    |  |
| CommonMark      | 0.20                       | *    | 0.20    | 0.70                         | *    | 0.70    |  |
| Hangfire        | 0.16                       | 0.13 | 0.15    | 0.86                         | 0.68 | 0.79    |  |
| Humanizer       | 0.18                       | 0.31 | 0.18    | 0.83                         | 0.57 | 0.81    |  |
| Lean            | 0.19                       | 0.12 | 0.18    | 0.77                         | 0.82 | 0.80    |  |
| Nancy           | 0.09                       | 0.08 | 0.09    | 0.81                         | 0.92 | 0.84    |  |
| Newtonsoft.Json | 0.15                       | 0.11 | 0.15    | 0.71                         | 0.52 | 0.71    |  |
| Ninject         | 0.14                       | *    | 0.14    | 0.80                         | *    | 0.80    |  |
| RestSharp       | 0.12                       | 0.14 | 0.12    | 0.82                         | 0.89 | 0.82    |  |
| Overall         | 0.14                       | 0.11 | 0.13    | 0.81                         | 0.84 | 0.81    |  |



#### **Results: Accuracy**

| Project Name    | Herzig et al. [6] |      |         | Heddle ( $\delta$ -NFG + WL) |      |         |  |
|-----------------|-------------------|------|---------|------------------------------|------|---------|--|
|                 | 2                 | 3    | Overall | 2                            | 3    | Overall |  |
| Commandline     | 0.67              | 0.48 | 0.64    | 0.82                         | 0.92 | 0.82    |  |
| CommonMark      | 0.65              | *    | 0.65    | 0.70                         | *    | 0.70    |  |
| Hangfire        | 0.70              | 0.54 | 0.64    | 0.86                         | 0.68 | 0.79    |  |
| Humanizer       | 0.64              | 0.42 | 0.62    | 0.83                         | 0.57 | 0.81    |  |
| Lean            | 0.69              | 0.62 | 0.69    | 0.77                         | 0.82 | 0.80    |  |
| Nancy           | 0.70              | 0.56 | 0.67    | 0.81                         | 0.92 | 0.84    |  |
| Newtonsoft.Json | 0.71              | 0.56 | 0.71    | 0.71                         | 0.52 | 0.71    |  |
| Ninject         | 0.57              | *    | 0.57    | 0.80                         | *    | 0.80    |  |
| RestSharp       | 0.71              | 0.69 | 0.70    | 0.82                         | 0.89 | 0.82    |  |
| Overall         | 0.69              | 0.62 | 0.67    | 0.81                         | 0.84 | 0.81    |  |



#### **Results: Runtime**

| Project Name    | Ba   | Barnett et al. [2] |         |       | Heddle ( $\delta$ -NFG + WL) |        |  |  |
|-----------------|------|--------------------|---------|-------|------------------------------|--------|--|--|
|                 | 2    | 3                  | Overall | 2     | 3                            | Overal |  |  |
| Commandline     | 0.10 | 8.51               | 0.12    | 0.85  | 182.62                       | 1.04   |  |  |
| CommonMark      | 2.56 | *                  | 2.56    | 14.95 | *                            | 14.95  |  |  |
| Hangfire        | 1.15 | 4.97               | 1.95    | 8.06  | 45.29                        | 11.64  |  |  |
| Humanizer       | 0.44 | 0.23               | 0.41    | 4.86  | 2.56                         | 4.58   |  |  |
| Lean            | 1.00 | 1.59               | 1.28    | 18.07 | 24.07                        | 18.23  |  |  |
| Nancy           | 2.06 | 5.63               | 2.42    | 18.38 | 85.55                        | 21.78  |  |  |
| Newtonsoft.Json | 2.14 | 6.42               | 2.35    | 8.01  | 11.98                        | 8.58   |  |  |
| Ninject         | 1.25 | *                  | 1.25    | 14.99 | *                            | 14.99  |  |  |
| RestSharp       | 0.74 | 1.25               | 0.78    | 9.86  | 26.25                        | 10.11  |  |  |
| Overall         | 1.02 | 5.02               | 1.41    | 7.99  | 43.29                        | 9.56   |  |  |



#### **Results: Runtime**

| Project Name    | Her                  | zig <i>et al</i> .   | [6]                  | Heddle ( $\delta$ -NFG + WL) |        |         |
|-----------------|----------------------|----------------------|----------------------|------------------------------|--------|---------|
|                 | 2                    | 3                    | Overall              | 2                            | 3      | Overall |
| Commandline     | 10.51                | 8.56                 | 9.26                 | 0.85                         | 182.62 | 1.04    |
| CommonMark      | $1.96 \times 10^{3}$ | *                    | $1.96 \times 10^{3}$ | 14.95                        | *      | 14.95   |
| Hangfire        | $1.30 \times 10^{4}$ | $5.57 \times 10^{4}$ | $1.72 \times 10^{4}$ | 8.06                         | 45.29  | 11.64   |
| Humanizer       | 40.62                | 49.53                | 44.44                | 4.86                         | 2.56   | 4.58    |
| Lean            | 345.05               | 173.58               | 288.35               | 18.07                        | 24.07  | 18.23   |
| Nancy           | 570.57               | $1.29 \times 10^{3}$ | 600.16               | 18.38                        | 85.55  | 21.78   |
| Newtonsoft.Json | 225.62               | 510.77               | 230.49               | 8.01                         | 11.98  | 8.58    |
| Ninject         | 81.53                | *                    | 81.53                | 14.99                        | *      | 14.99   |
| RestSharp       | 46.22                | 222.98               | 72.09                | 9.86                         | 26.25  | 10.11   |
| Overall         | 81.53                | 647.99               | 117.35               | 7.99                         | 43.29  | 9.56    |



#### **Results: Accuracy**

| Project Name    |      | $\delta$ -PDG+G | CV      | Heddle ( $\delta$ -NFG + WL |      |         |
|-----------------|------|-----------------|---------|-----------------------------|------|---------|
|                 | 2    | 3               | Overall | 2                           | 3    | Overall |
| Commandline     | 0.77 | 0.84            | 0.80    | 0.82                        | 0.92 | 0.82    |
| CommonMark      | 0.90 | *               | 0.90    | 0.70                        | *    | 0.70    |
| Hangfire        | 0.84 | 0.88            | 0.87    | 0.86                        | 0.68 | 0.79    |
| Humanizer       | 0.69 | Х               | 0.69    | 0.83                        | 0.57 | 0.81    |
| Lean            | 0.84 | 0.71            | 0.84    | 0.77                        | 0.82 | 0.80    |
| Nancy           | 0.86 | 0.80            | 0.86    | 0.81                        | 0.92 | 0.84    |
| Newtonsoft.Json | 0.86 | 0.69            | 0.82    | 0.71                        | 0.52 | 0.71    |
| Ninject         | 0.94 | *               | 0.94    | 0.80                        | *    | 0.80    |
| RestSharp       | 0.74 | 0.53            | 0.70    | 0.82                        | 0.89 | 0.82    |
| Overall         | 0.83 | 0.84            | 0.83    | 0.81                        | 0.84 | 0.81    |



#### **Results: Runtime**

| Project Name    | $\delta$ -PDG+CV |        |         | Heddle ( $\delta$ -NFG + |        |         |
|-----------------|------------------|--------|---------|--------------------------|--------|---------|
|                 | 2                | 3      | Overall | 2                        | 3      | Overall |
| Commandline     | 0.42             | 153.55 | 0.59    | 0.85                     | 182.62 | 1.04    |
| CommonMark      | 10.38            | *      | 10.38   | 14.95                    | *      | 14.95   |
| Hangfire        | 10.61            | 123.99 | 13.84   | 8.06                     | 45.29  | 11.64   |
| Humanizer       | 9.24             | х      | 9.24    | 4.86                     | 2.56   | 4.58    |
| Lean            | 19.28            | 17.08  | 19.28   | 18.07                    | 24.07  | 18.23   |
| Nancy           | 22.04            | 20.52  | 21.96   | 18.38                    | 85.55  | 21.78   |
| Newtonsoft.Json | 20.04            | 51.54  | 20.32   | 8.01                     | 11.98  | 8.58    |
| Ninject         | 4.52             | *      | 4.52    | 14.99                    | *      | 14.99   |
| RestSharp       | 7.80             | 1.01   | 4.99    | 9.86                     | 26.25  | 10.11   |
| Overall         | 7.17             | 70.35  | 10.27   | 7.99                     | 43.29  | 9.56    |



#### **Results: Overview**





#### **Future Directions**

In Flexeme, we still make use of agglomerative clustering which is common in untangling literature, it is left to future work to explore the design space and consider other clustering approaches.

We employ our multiversion Program Dependency Graph and Name-flow graphs for untangling tasks; however, nothing precludes them from more typical static analysis work on multiple versions.



Concepts 2

3

**Results: Overview** 



#### Flexeme

Start from Le and Pattison's MVICFG<sup>[1]</sup>.

Augment with Data-flow to get to the  $\delta$ -PDG.

Augment with Name-flows to get to the  $\delta$ -NFG.

Separate the  $\delta$ -NFG into a collection of graphs.

Re-cluster using graph similarity.



[1] Wei Le and Shannon D. Pattison. 2014. Patch verification via Multiversion Interprocedural Control Flow Graphs. Proc. 36th Int. Conf. Softw. Eng. ICSE 2014(2014), 1047-1058. https://doi.org/10.1145/2568225.2568304

#### You can find Flexeme at: https://pppi.github.io/Flexeme





пш