
Flexeme: Untangling Commits 
Using Lexical Flows

Santanu Kumar Dash‡Profir-Petru Pârțachi† Miltos Allamanis• Earl T. Barr†

† Department of Computer Science, University College London, London, United Kingdom

‡ Department of Computer Science, University of Surrey, Guildford, Surrey, United Kingdom

• Microsoft Research, Cambridge, Cambridgeshire, United Kingdom



Tangled Commits

The features implemented by 
these two (atomic) patches are 
unrelated.

Tangled patches introduce bias.



Why care about tangled commits?

Because atomic commits

Enable bug localisation techniques, as simple as git bisect, or as 
complex as statistical and neural approaches.

Provide a cleaner interlinking between feature implementations, and 
their histories, to requirements.



Flexeme at a Glance



Flexeme

Start from Le and Pattison’s MVICFG[1].

Augment with Data-flows to get to the δ-PDG.

Augment with Name-flows to get to the δ-NFG.

Separate the δ-NFG into a collection of graphs.

Re-cluster using graph similarity.

[1] Wei Le and Shannon D. Pattison. 2014. Patch verification via Multiversion Interprocedural Control Flow Graphs. Proc. 36th Int. Conf. Softw. Eng. -

ICSE 2014(2014), 1047–1058. https://doi.org/10.1145/2568225.2568304



Weisfeiler-Lehman Graph Kernel

A graph kernel captures the notion of similarity – given a particular 
kernel, we can embed graphs into a vector space where the dot 
product captures our desired similarity.

Weisfeiler-Lehman (WL) is a meta-kernel based on the graph 
isomorphism test under the same name.

Employing the rooted sub-trees kernel under the WL framework 
captures the intuition, in our setting, of similar downstream 
“behaviours”.



Commit Untangling Baselines

State-of-the-art at the time of our writing: 

• DU-chains based approach (Barnett et al.[2])

• Confidence Voting + Agglomerative Clustering (Herzig et al.[3,4])

Almost all information needed for both approaches is contained in 
the δ-NFG.

[2] Mike Barnett, Christian Bird, João Brunet, and Shuvendu K. Lahiri. 2015. Helping developers help themselves: Automatic decomposition of code 

review changesets. Proc. - Int. Conf. Softw. Eng.1, August 2014 (2015), 134–144. https://doi.org/10.1109/ICSE.2015.35

[3] Kim Herzig, Sascha Just, and Andreas Zeller. 2016. The impact of tangled code changes on defect prediction models. Empir. Softw. Eng.21, 2 (2016), 

303–336. https://doi.org/10.1007/s10664-015-9376-6

[4] Kim Herzig and Andreas Zeller. 2013. The impact of tangled code changes. IEEE Int. Work. Conf. Min. Softw. Repos.(2013), 121–130. 

https://doi.org/10.1109/MSR.2013.6624018

https://doi.org/10.1109/ICSE.2015.35
https://doi.org/10.1007/s10664-015-9376-6
https://doi.org/10.1109/MSR.2013.6624018


Reproducing Barnett et al.

• Starting from the 𝛿-PDG keep only dataflow.

• Separate flow by “kill” statements to obtain DU-chains.

• This is naturally intersected with diff-hunks by the 𝛿-PDG 
construction.

• The result is DU-chains with some nodes annotated as changed.

Changes are related if:

1. They are both changed uses of the same definition.

2. One is a changed use and the other is its changed definition.



Reproducing Herzig et al.

The approach by Herzig et al. makes use of the following 
confidence voters: file distance, package distance, call graph, 
change couplings, data dependency.

We adapt package distance to namespace distance as our 
projects are in C#.

We precompute co-occurrence matrices for files for change 
couplings.



Experimental Set-up

We focus on comparing the untangling method and not the 
construction of auxiliary structures: 

we only consider untangling time for runtime results.

We measure accuracy as:

We always apply the Hungarian Algorithm to find a maximal 
accuracy permutation of labels.



Corpus Generation

We consider commits that:

1. Have been committed by the same developer within 14 days of 
each other with no other commit by the same developer in 
between them.

2. Change namespaces whose names have a large prefix match.

3. Contain files that are frequently changed together.

4. Do not contain certain keywords (such as ‘fix’, ‘bug’, ‘feature’, 
‘implement’) multiple times.

We then attempt to git cherry-pick the selected candidates on 
the parent of the chain.



Corpus Statistics



Results: Accuracy



Results: Runtime



Results: Accuracy



Results: Accuracy



Results: Runtime



Results: Runtime



Results: Accuracy



Results: Runtime



Results: Overview



Future Directions

In Flexeme, we still make use of agglomerative clustering which is 
common in untangling literature, it is left to future work to explore 
the design space and consider other clustering approaches.

We employ our multiversion Program Dependency Graph and 
Name-flow graphs for untangling tasks; however, nothing 
precludes them from more typical static analysis work on multiple 
versions.



You can find Flexeme at:
https://pppi.github.io/Flexeme

https://pppi.github.io/Flexeme

