
POSIT: Simultaneously Tagging 
Natural and Programming Languages

Santanu Kumar Dash‡Profir-Petru Pârțachi† Christoph Treude• Earl T. Barr†

† Department of Computer Science, University College London, London, United Kingdom
‡ Department of Computer Science, University of Surrey, Guildford, Surrey, United Kingdom
• School of Computer Science, University of Adelaide, Adelaide, South Australia, Australia



Mixed Text

On Fri, 24 Aug 2018 02:16:12 +0900 XXX <xxx@xxx.xxx>wrote:

[...]

Looking at the change that broke this we have:

<-diff removed for brevity>

Where “real” was added as a parameter to __copy_instruction.

Note that we pass in “dest+ len” but not “real + len” as your patch fixes. 
__copy_instruction was changed by the bad commit with:

<-diff removed for brevity->

[...]

2



Mixed Text

Where “real” was added as a parameter to __copy_instruction.

3



Mixed Text

4

ADV string_literal VERB VERB ADP DET NOUN ADP method_name .

Where “real” was added as a parameter to __copy_instruction .

English Code English English English English English English Code English



POSIT: Segmenting and Tagging Mixed-Text

Mixed-text is ubiquitous in software development, but has mostly been handled as text in a single 
natural language. 

POSIT solves the mixed-text tagging problem: given text with English and code, it segments it and 
tags it with AST or PoS tags.

It is realised as a neural network trained on data from Stack Overflow and CLANG compilations.

POSIT indirectly helps developers: it improves downstream tools on mixed-text: traceability, 
knowledge extraction, software artefact navigation, ontologies over mixed-text. 

5



POSIT’s Neural Architecture

6



Conditional Random Field (Viterbi Decode)
Demonstrated on Language Segmentation

7



Experimental Set-up

We train POSIT on two corpora: Stack Overflow and Code Comments.

We compare POSIT with post-processed StORMeD output on Java Stack 
Overflow posts.

We augment TaskNav, a task extractor for software docs, with POSIT.

8



Corpus Statistics

9

Corpus Name Tokens Sentences English Only Senteces Code Only Sentences Mixed Sentences

Train&Dev Eval Train&Dev Eval Train&Dev Eval Train&Dev Eval Train&Dev Eval

Stack Overflow 7645103 2612261 214945 195021 55.8% 57.0% 32.6% 38.0% 11.6% 4.9%

Code Comments 132189 176418 21681 8677 11.3% 11.0% 79.4% 79.6% 9.4% 9.3%

Total 7777292 2788679 236626 203698 51.7% 55.1% 36.9% 39.7% 11.4% 5.1%



StORMeD as a Baseline

StORMeD is the pioneering work on mixed-text.

They use island grammars to separate Java code from English.

They provide a parsed Stack Overflow corpus, and a web service.

We adapt StORMeD to serve as a baseline for POSIT.

10



POSIT on Java Stack Overflow posts

11

Task

Tool
Language 

Segmentation
Token 

Tagging

StORMeD 71.0% 61.9%

POSIT 81.6% 85.6%

We use Balanced Accuracy to assess the performance of the approaches.



POSIT on Stack Overflow and Code Comments

12

Task

Corpus
Language 
Identification

Token 
Tagging

Stack Overflow 97.7% 93.8%

Code Comments 99.7% 98.9%

Mean 98.7% 96.4%

We use Balanced Accuracy to assess the performance of the different corpora.



TaskNav

13

Treude et al. built TaskNav to extract tasks from 
software documentation.

It builds a dependency tree over part-of-speech 
tagged sentences that contain manually tagged 
code tokens.



Integrating POSIT into TaskNav

POSIT is a REST server: it takes a sentence and returns a tagging and 
segmentation.

TaskNav++ replaces TaskNav’s segmenter and tagger with POSIT.

14



TaskNav++

Compared to TaskNav, TaskNav++ finds 97 new tasks over 30 e-mail 
threads.

Of these, manual annotators considered 65 (67.0%) considered 
reasonable.

TaskNav favours recall; TaskNav++’s 2.2 extra tasks improve recall.

15



Future Directions

POSIT aims to help developers indirectly: we hope it will help tools smiths and 
researchers produce better tools.

Traceability: POSIT's code-aware PoS tagging may improve precision.

Comprehension: POSIT separates code and English enabling code-sensitive and 
documentation-aware navigation.

Knowledge Extraction and Ontology: POSIT's segmenter facilitates separate analysis 
of the code and English in mixed-text.

16



Where to POSIT?

https://pppi.github.io/POSIT

17

https://pppi.github.io/POSIT

