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Chapter 1

Introduction

Collectable Card Games provide an interesting platform for exploring AI-related questions

within the domain of imperfect information games, and strategy elaboration for pre-game

match scenarios as well as in-game scenarios. What makes a game a Collectible Card

Game? They must have several aspects to them:

1. A card collection, which the player slowly builds through a variety of means;

2. Players can select cards from their collection under a set of constraints defined by

the rules of the game. They use this to create valid decks (sets of cards) such that

they increase the likelihood of them winning game matches. This process is called

deck building and it can be manual or automatic. The latter is the aim of this

project;

3. A game match – an environment, with a set of associated match rules, where one

plays their chosen set of cards against an opponent who also chose their respective

deck according to the same rules;

In such games, the basic unit is a card – an entity that has a cost and text associated

with it. The cost is expressed in the resources of the particular game and can also be a

0 cost. The text can be complex, containing conditional expressions, restrictions to when

the card can be played or other text deemed fair by the game designers and is enacted

when the card is played. This text can counteract or enhance the text of other cards, and

can change the rules of the game either temporarily or until the end of the match. This

last aspect makes it difficult to determine games via formulas.

The card collection of a player is a subset of the universe of all cards in the game,

that is all the cards approved and published by the creator of the game. At any point in

time, the card universe is finite, but it is regularly expanded by the creators of the game.

The collection of a player can be expanded by different means depending on the game,

but all usually include the option to buy cards from an official retail or online shop. For

our purposes, we will consider the collection of a player and the universe of cards to be

equal.

The deck building aspect, that is choosing a set of cards to play matches with, is

dependent on the particular game as the set of rules it must respect are defined by the

game. Choosing cards optimally is difficult as the ‘optimum’ is a function of what other

9



10 CHAPTER 1. INTRODUCTION

players are choosing to play and human-dependent factors such as play style. In the case

of Hearthstone, these constraints will be explored in the following section.

The game match differs by game as well, but all share some common features. All

game matches are between two players. Both have some initial life total. The aim of the

game is to reduce the life total of the opponent to 0 by playing cards from your hand.

Players take turns to make their plays. Both start with a defined number of cards in

hand and draw one card from their deck to the hand at the start of each turn. The decks

are shuffled at the start of a match. A more detailed description is provided in the next

section for the game Hearthstone.

The usual game from this genre that is of research interest was, and arguably still

is, “Magic: The Gathering”, which exists digitally as well as a physical boxed version.

However, the game studied here is Hearthstone, due to its purely digital format and its

more simple and restrictive rules.

This project aims to solve the problem of choosing a set of cards according to the rules

of Hearthstone such that, if we ignore the difference in skill of the players, the odds of

winning are more than 50% with 99% confidence. In other words, we are trying to find a

sufficiently good deck choice. I have managed to create an algorithm capable of probing

the search space for satisfactory solutions by means of a genetic algorithm. The search

can be geared towards using a choice of random or user-provided baselines to evaluate

against, or evolving the populations dynamically by testing solutions against each other.

The choice of the search strategy can be used to answer different questions. What cards

are most likely to be popular? What cards are good if we know the cards played by

others? The core objective is achieved by using the search algorithm with a random

baseline while the user-provided baseline implements one of the extensions and answers

the latter question.

Additionally, an option where the user provides fewer constraints to the algorithm and

allows it to determine an in-game class1 choice on its own has been implemented. The use

of this option is mostly of predictive nature, anticipating meta-game2 shifts in the ladder

environment of Hearthstone.

1.1 The game studied: Hearthstone

Hearthstone represents a Collectible Card Game and is sometimes referred to as a Strategy

Card Game as well, and shares the same 3 main aspects as any other game from this genre.

1Deck building constraint specific to Hearthstone that determines what subset of the collection is valid

for a deck.
2In this context: what decks are chosen by most players.
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Figure 1.1: Annotated screenshot of a in-progress game match of Hearthstone during the

first player’s turn.

The match aspect, which is the one most explored in such games, has several phases.

It has the aim of reducing the opponent life total to 0 (in Figure 1.1 the life totals of the

respective players can be seen in the bottom right corner of each portrait). Assuming

both players have selected a valid deck, in Hearthstone, a game match starts with a coin

toss to decide who goes first. The player going second gains the coin itself as a playable

card. Next is the mulligan phase. The player going first is presented 3 cards from his

deck – a collection of 30 cards. He can choose which to keep in his hand and which to

replace with other cards from his deck drawn randomly. At the same time, the second

player is presented with a similar choice, except he is provided 4 cards to compensate for

going second. At this point, both players only know what hero (in-game class) the other

is playing.

For the remainder of the game, the players take turns playing cards from their hands

to enact the card text, also referred to as card mechanic or simply mechanic. At the start

of each turn the active player draws a card and gains one active resource crystal up to

a maximum of 10. Cards have an associated cost to be played. Using a card renders

the indicated number of crystals inactive. At the start of each turn all crystals become

active again, i.e. are refreshed. Spell cards enact their effect and are discarded, these

could be things such as deal 8 damage to the enemy hero. Minion cards summon minion

tokens – objects that exist on the board, on the player’s side of the board. A minion

that is summoned has a 1-turn summon fatigue and cannot act (indicated by a sleeping

animation), otherwise, minions on the board can decide what enemy character (minion

or hero) to attack. Every minion has an associated attack value – shown in the bottom

left part of the token and a health value – shown in the bottom right part of the token.

Certain minions have Battlecries – effects that are enacted when they are summoned,

Deathrattles – effects that are enacted when they are destroyed indicated by a skull

under the minion token, Aura – effects that are active as long as the minion remains on

the board, or Trigger – effects that occur every time when certain conditions are met.

When several events occur at the same time, for example, multiple Deathrattle minions
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dying at the same time, the events are placed on a stack in the same order as cards were

played and are resolved sequentially. This is referred to as an event stack. One should

also note that card text may change game rules either temporarily or permanently from

the point at which the card was played. A conclusion is reached when one or both players

reach a life total of 0 or one player decides to concede.

So far we assumed to have a set of cards already chosen, but that is exactly the aspect

of interest to us, the deck building aspect. Let us explore the rules that govern it in more

detail. When building a deck one must adhere to the following restrictions:

1. A deck must have a hero associated with it. This restricts the cards allowed in a

deck to neutral – cards allowed to be used by any hero, and those of the chosen

hero.

2. A deck must have exactly 30 cards.

3. Cards may be used at most twice in a deck, except for legendary cards which may

be used at most once.

A deck respecting these restrictions is considered valid.

It is precisely these fairly restrictive rules for deck-building that made this problem

for Hearthstone more tractable as opposed to Magic: The Gathering, where decks may

be of variable length.

1.2 Other similar games

As already mentioned, the staple of the genre is Magic: The Gathering, however, that is

not the only game that can be identified as a Collectable Card Game. Other games of

similar nature that are worth mentioning are the Yu-Gi-Oh card game or the Pokémon

card game. Similar to Magic, they offer variable length decks and hence add complexity

to the problem of interest.

If we canvas the digital scene, other games of interest would be Scrolls or Hex. In this

case, the difficulty would be the lack of simulating libraries due to the limited popularity

of the games. Another reason for the lack of such libraries could potentially be the diffi-

culty of simulating these games as the game match aspect is considerably more complex,

containing a more advanced notion of game phases as well as the option to interrupt

opponent actions, which cannot be easily resolved in the same manner as Magic, i.e. an

event stack.

On the other hand, each of these games comes with official and fairly extensive rule

books detailing the resolution of most if not all game events that could occur. An ad-

vanced rulebook for Hearthstone is being maintained by the community, but it is an

unofficial endeavour. What this means for this project is that the simulation may create

event resolutions that cannot occur in the actual game and cause a disparity between the

performance of a deck in simulations and the performance in the actual game. I shall

consider the disparity to be insignificant on the basis that such scenarios are tagged as

bugs for the simulating frameworks and are being actively patched.
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Finally, note that there are quite a few other games not mentioned here in both

digital or physical format due to a spike in the popularity of such games in the mid-90s.

However, they have not properly survived the test of time. With regard to newer ones not

mentioned, especially those that are on phones and tablets, they are either experimental

in style and/or features or have other issues that are beyond the scope of this project.
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Chapter 2

Preparation

This chapter will consider how players attempt to solve the problem at hand. We also

present ideas that were considered as possible implementable solutions along with the

reason why they were or were not taken forward. Finally, we will consider early design

decisions that set the stage for implementation.

2.1 The players and their approach to the problem

Before attempting to solve the problem, it is reasonable to observe how players usually

approach the same issue. By analysing tournament interviews and videos that are publicly

available, where players discuss deck building and strategies whilst thinking out loud, a

few patterns can be observed:

1. Choose a theme – a core mechanic within the game that the deck will focus on

2. Add support cards to ensure the thematic choices work

3. Add “tech” choices that have the purpose of counteracting specific opponent cards

Alternatively:

1. Choose a game finishing strategy or combination of cards

2. Add draw mechanic cards – cards that when played allow you to draw the card from

the top of your deck, to speed up the acquisition of the combination of cards

3. Add cards to control the board state and survive until the combination is in hand

4. Optionally add “tech” choice cards

Regardless of which approach was chosen for the initial deck, the process by which

players improve it is mostly identical. That is, they play games with the purpose of

identifying dead cards – cards that sit in the hand and cannot be played optimally. Once

they are found they are swapped with a different choice, usually depending on opponents

encountered, and the process repeats. The decision could also be biassed by players

noting when they wish they had a different card in place of the one in hand if this occurs

15
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sufficiently often. Sadly, this is not something that could easily be translated into code

as this would require a concept of when an arbitrary card is good given a board state.

We will discuss this further in the conclusion as a possible improvement to the produced

solution.

2.2 The chosen approach: A genetic algorithm

The style in which players perform deck-building, as well as a study in identifying opponent

decks based on the early stages of the match [1] pointed towards two main approaches

that would be tractable within a reasonable time-frame.

The first approach considered was heavily inspired by [1]. Using a collection of game

histories and the eventual outcome of the game one could attempt to learn cards and

card combinations that worked well against certain board state patterns. Additionally,

we could learn what card choices eventually lead to winning more often than others.

Next, we can consolidate the found card choices and at this merger stage ensure that deck

building rules are respected.

The algorithm would then refine the solutions by spotting suboptimal cards via sim-

ulations. Such cards would be replaced by other options found by the original method

that are flagged as useful given the opponents’ cards.

This approach appears appealing until the amount of data required to make it work

reasonably is assessed. An additional issue would be the correct handling of user data

when collecting game replays, which would be necessary so that I could mine the correct

choices. The process is fairly straightforward but intrusive to the users. This approach

was also considered by Elie Bursztein; the author of the algorithm to predict opponent

decks, but no results were made publically available if any were attained. As such, onto

the second approach, a genetic algorithm approach.

Genetic algorithms are adaptive heuristic search algorithms based on the evolution-

ary ideas of natural selection and genetics. They build upon the idea of “survival of the

fittest” and represent an intelligent exploitation of a form of directed random by using a

notion of history to focus on regions that are more likely to yield good solutions. They

simulate the survival of individuals within a population across several generations. Indi-

viduals, or candidate solutions, are represented by a concatenation of genes – constituent

structures that take values from some alphabet, usually {0, 1}. This concatenation is

also referred to as a chromosome. The set of all individuals represents the population.

Progress from one generation to the next is via genetic operators including but not limited

to mutation, crossover, and selection. Selection is used to give better candidates, as de-

termined either via a quality function or an error function, more chances to propagate to

the next generation. The quality function can be either the same for all generations, that

is we are evolving solutions in a static landscape, or it can be a function of the current

population, that is we are evolving solutions in a dynamic landscape. Crossover is based

on the idea that sometimes an individual may be more than the sum of its parts; that

is by mixing two good solutions we may generate a better 3rd one. Mutation is used to

mimic transcription errors that can occur from parent to offspring. Mathematically, it



2.3. TYPE AND OPERATOR DESIGN 17

is a perturbation factor and represents the random search component of the algorithm.

There are several implementations of these operators and some scenario specific imple-

mentations may be necessary when using unorthodox gene alphabets as was the case for

this project. To ensure the termination of the algorithm a stop condition is used alongside

it. This is usually a function of real-world time, number of generations, quality, or some

combination of these.

Figure 2.1: Visual representation of terms from Genetic Algorithms

Usually, such an algorithm uses a binary string encoding for candidates for the solution

to simplify the genetic operations, but there is no easy way to encode the decks as binary

strings. On the other hand, there is the option of making the selection and mutation

operators mimic human behaviour towards the problem when the gene alphabet represents

the set of all allowed cards. As we later see, this leads to favourable results.

2.3 Type and Operator design

The next step was choosing an appropriate level of encoding granularity. This, in turn,

concerns expressivity of the structures representing candidate solutions. We want to be

expressive enough to easily translate into a format understood by the simulation har-

ness, while not bothering with too many details that are game specific. This will ensure

searching the solution space can be done in a sufficiently intelligent manner while avoiding

cluttering and complicating the implementation of such an algorithm. It could be argued

that adding more details would improve our ability to choose intelligently, however, the

true difficulty lies in finding the balance for just the right amount of information.

The design took shape in several iterations of adding and discarding information. Since

cards can only be found reliably by the simulation harness using their specific card id, I

was locked into either using them directly or having a look-up table that would have to be

used prior to simulation calls. Additionally, I needed to ensure that deck building rules

are respected; that is, we don’t use more than the allowed number of cards for each card.

This pointed towards the first Card type being simply a pair of card id (String) and card

copy limit (Integer) with the assumption that I would maintain a per-class card list.

While still in the design phase, it was found that this will be sufficient only for popu-

lations of candidates of a predefined in-game class, and as such will not generalise nicely

to the mixed populations case. I wanted to avoid restrictive design decisions if possible.

The Card type was therefore refined to a triplet of card class (String), card id (String)

and card copies limit (Integer).

At some later point, card resource cost was being considered as an additional entry.

This would allow us to better construct the initial population. The issue was that to

do so, we would need to employ a good deck archetype classifier that can distinguish
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aggressive, control, tempo-based and combination-based strategies. This could be a small

side-project in its own right, and could have been considered as an extension. The main

issue was the lack of a good corpus with which to train such a classifier and the idea was

discarded. As such, the card type took the following form:

type Card = (String, String, Integer)

Having a notion of Card, I needed to decide on a structure for the “Chromosome” or

candidate solution. I am trying to build a deck, which is a selection of an in-game class

along with 30 cards following certain rules. This lead to defining a Deck type as a pair of

the hero (in-game class) of type String and DeckCards, where the later is a list of pairs

of card ids and the number of copies of the card included in the deck. The building of

DeckCards is not exposed to the end-user, and the deck-building rules are used as post-

conditions for any function returning DeckCards. Regarding the in-game hero, it was

necessary to include in order to generate correct calls for the simulation harness, however,

this choice also ensured that the type could persist unchanged once mixed populations

were added. As a final note on type choices, the population was modelled simply as pairs

of Deck and an optional Double score.

type Deck = (String, DeckCards)

type DeckCards = [(Card, Integer)]

type ScoredDeck = (Deck, Maybe Double)

With these in hand, selection can be implemented using a modified form of elitist

selection. Given a percentage e of elitism, this selector automatically promotes e% of the

individuals to the next generation and regenerates the remaining ones via crossover from

the promoted individuals. This choice can be argued based on the fact that within the

game ecosystem, the usual propagation of a good deck is done by copying it directly from

the best players who provide them publicly. Web sites such as “www.hearthpwn.com”

are both a proof and a vehicle of this phenomenon. Therefore, this operator must obey

the following statements:

For the candidates that persist to the next generation:

be ∗ len(population)c = len(fst selecte(population))

and

∀i ≤ be ∗ len(population)c.get i population = get i (fst selecte(population))

For the candidates that go to crossover:

∀(candidateA, candidateB) ∈ (snd selecte(population)).

candidateA ∈ (fst selecte(population)) ∧ candidateB ∈ (fst selecte(population))

and

len(population)− be ∗ len(population)c = len(snd selecte(population))

Where get is the Haskell Prelude.get function and selecte is the selection operator with

an elitism percentage of e.
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Mutation can be used to mimic the process of refinement that players perform where

they identify bad cards and attempt to replace them. A notion of granular utility that

measures the usefulness of cards individually rather than as a group can be used to mimic

player card preference. This, although already in the implementation phase, triggered a

further refinement of the DeckCards type to allow for a per card utility score.

Mutation is meant to work on at most one card at a time, therefore, the result should

be a valid deck and may differ from the input by at most one card.

Crossover sadly does not have a natural equivalent, but it is the main force guiding

the search with the help of selection. This is done, from a high-level perspective, by

propagating choices that were successful. The complexity of crossover did increase due

to non-binary encodings. When using binary string to encode solutions crossover can

be performed simply by picking a random crossover point. This is not the case for our

encoding and care had to be taken to ensure the solutions performs in a timely manner.

This operator provides a third valid candidate solution that is related to two candidate

solutions that are given as input. To ensure this, a reasonable definition of crossover within

this solution-space had to be defined, because the usual pick a random crossover point

and copy up to the point from one parent and then switch to copying from the other

parent does not make sense with our chosen representation.

The initial intuition was to merge all cards together, sorted by score, and pick 30 at

random biassed by the index of the card within the union set. This idea was later scrapped

in favour of a slightly different one due to performance concerns and the inability to

generalise the first attempt to mixed populations. The current definition works differently

on cards that are in both decks and cards that are only in one or the other. The exact

workings will be further discussed in the next chapter.

One final thing to note within the context of genetic algorithms is that selection and

crossover work towards reducing diversity and converging on a solution while mutation

acts similar to a perturbation factor; that is, it works against convergence. The reason

why we want to reduce the rate of convergence is to avoid local maxima, in which we

might get stuck if we were to only use the operators for selection and crossover. The

trade-off is that we might have to wait longer for a solution.

2.4 Language of choice and working environment

The language of choice for the implementation was Haskell. This is to allow a rapid

prototyping style of development and a modular approach to writing and testing the

operators individually. This lead to an iterative waterfall development work style where

each operator was a deliverable. Testing was to be done for functionally pure code by

stating properties of correct input and properties that should be respected by output along

with asserting invariants within the implementation. Each prototype was then assessed

for correctness using QuickCheck [2]. This works by using the preconditions and the type

system to deduce and generate random valid input, and checks if the output satisfies the

provided post-conditions.

QuickCheck enabled me to catch data corruption early if and when it occurred. Later
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in the project, the assertions have been changed to recovery attempts in order to tolerate

occasional recoverable corruption, such as more than 30 cards in a deck after a crossover

operation.

Prior to any project, related coding, “An introduction to genetic algorithms” [3] was

read and several smaller problems presented as exercises for the reader were solved using

a genetic algorithm. Amongst these were the iterated prisoner’s dilemma and evolving

polynomials that approximate sin(x). This was done to become accustomed to the style,

mindset and assumptions required when solving a problem in such a fashion, as well as

interpreting results from such a system.

Finally, a working environment and back-up system had to be set-up for both code and

write-up related files. Git was used to manage code changes for both Java and Haskell, and

SVN for LATEX. The repositories themselves were backed-up and cloned across all physical

working environments using Dropbox. This allowed different granularity of history for

different files while maintaining private access to the work in progress.

2.5 A canvas of libraries for simulating Hearthstone

For the purpose of evaluating a deck, we need to determine how well it performs against

a baseline or against other candidate solutions. This requires simulating Hearthstone

games efficiently and using an AI capable of playing a variety of decks. Luckily there is

a community dedicated to studying Hearthstone and simulating the game accurately [4]

which also provides links to GitHub repositories representing projects that aim to allow

simulating Hearthstone games, as well as AI implementations.

Sadly, Fireplace [5] was an inactive project at the time of preparation containing bugs

that would have interfered with the project, although it appears to have been resurrected

at the time of writing. The next library considered, mostly due to being written in Haskell;

HearthShroud [6]. This does not provide an AI implementation. Implementing an AI for

the game was considered too great an endeavour for the time-frame of this project.

An alternative was found, MetaStone [7]. It seemed to be the best available option

in terms of AI implementation diversity, the performance of simulations, and cards im-

plemented at the time of preparation. The downside is that it is written in Java. Quite

obviously, the MetaStone project is not geared towards being used as an evaluation func-

tion within a genetic algorithm nor was it written with compatibility with Haskell in

mind. With minimal changes, it was possible to re-purpose it as such, at the cost of an

additional library dependency to handle the communication between the two different

languages. The exact details of this will be discussed later.

2.6 Related work

There is little literature with regard to deck building within a Collectable Card Games,

however, there is work that attempts to solve the other two problems. It can be argued

that we need an efficient simulator, and as such a solution to the 3rd problem (game

playing AI), to attempt deck building and until recently there were no solutions that were



2.6. RELATED WORK 21

sufficiently fast. Another reason for why this might be the case is that until Hearthstone,

decks were not restricted to exactly n cards for some known n. Rather they were allowed

to fluctuate and this makes the problem considerably harder as it expands the solution

space, by adding an additional degree of freedom.

Nevertheless, we can see that there has been work done towards the game playing AI

[8, 9], where the respective authors explore different ways of deciding moves within a match

and compare different approaches, including supervised and unsupervised learning and

different methods of game tree exploration, arguing why Monte Carlo Tree Search might

be slow within the context of Hearthstone. This approach is not unique to Hearthstone

and has even been applied to Magic: The Gathering in the past with some success [10],

and game specific improvements were later found [11], which might lead one to believe

that similar improvements could be ported over to Hearthstone as well.

Another article considered the meta-game concept in different games including Hearth-

stone [12]. This works is more directly related to the problem I am tackling as one of

the inputs is, for all intents and purposes, a meta-game snapshot. For the purpose of

this project, I consider this information to be known to the user as there are sites and

communities preoccupied with gathering, maintaining and presenting this data.

Overall, the current literature provides ways of improving the input as well as im-

proving the game match simulations that are required for this project. What this project

attempts to do, is to unite the results from previous work into a coherent structure to

solve a different problem and fill a gap in the current status quo. Hopefully, it will serve

as a staging ground for more interesting projects in the future.
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Chapter 3

Implementation

In this chapter, we will explore the implementation of the proposed solution along with

the decisions that guided and shaped it. For each major operators and functions I will

state pre- and post-conditions which were checked using QuickCheck during development

for the purpose of exposing and fixing bugs. Encountered bugs will not be discussed unless

they forced a major re-factoring of the code.

3.1 Main algorithm

Here we will mostly focus on the algorithm and operators as they were implemented for

populations containing candidates only for the same in-game class. This separation is due

to mixed class populations being an extension.

3.1.1 Representing game specific structures

Armed with the chosen type representation for game data, those types still had to be

populated by concrete data that is valid within the context of the game. The first step

was a manual generation of a Catalogue (or rather a catalogue of catalogues). This hard-

coded variable contained exactly 10 lists within it. Each list represented cards that had

a certain class restriction to them, including the no-class restriction. This ensures that

the algorithm chooses cards that actually exist in the game while also respecting class

restrictions. This also allows specialising the algorithm to build candidate solutions from

a restricted set of potential cards.1

Finally, and mostly for the mixed population scenario, a hard-coded index containing

all valid in-game classes has been manually crafted. It has the purpose of simplifying the

generation of an initial mixed-population with minimal user input as well as an easier

generation of the class global score for crossover as will later be discussed.

1As a side note, the cards used by Haskell and Java are not necessarily the same, and that can be

used to search for solutions against opponents having access to more cards. This is not within the scope

of this project, but the curious could easily adapt the solution to this new scenario if they so desire.

23
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3.1.2 Initial population generation

The problem of generating an initial population has been broken down into generating a

single valid candidate at random and aggregating results into a list. This approach also

extends nicely to mixed populations as we can call the single candidate generator with

different restrictions each time.

To generate a single candidate we:

1. Generate a reduced catalogue that contains two lists. The first is class-neutral cards.

The second is class-specific cards.

2. Initialise the deck as a pair of input in-game class and the empty list.

3. Flip an unbiased coin to choose whether the card to be added is class-neutral or

class-specific.

4. Pick an index uniformly at random for the chosen card type.

5. Attempt to add the card to the deck we have built thus far. This could fail if adding

it would invalidate a deck-building restriction.2

6. Count the number of cards, return to 3 if there are fewer than 30, otherwise return

the deck

Precondition: The input represents a String which is a valid representation of an

in-game hero3 and a random number generator.

Postcondition: The output is a valid deck paired with a random number generator that

has a different state than the input one.

Now for population generation we have:

Precondition: An Integer seed, a positive Integer representing the number of candi-

dates to generate (let us call it n) and a String that represents an in-game class.

Postcondition: The output is a list of length n, containing only valid decks and each

deck must have the Hero field equal to the provided String input.

3.1.3 Selection

Figure 3.1: A high-level view of the elitism selection operator

2This is ensured by making the operators that add or remove cards to/from a deck check that card

level restrictions remain valid.The only deck restriction we might ignore at this point is that we must

have exactly 30 cards, because we are adding cards one at a time and we could still be looking for valid

cards to add.
3Valid values are ensured by providing the strings from the pre-built class index
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Selection is implemented in a fairly straightforward way. Since it is elitism, selection works

by taking the top p percent of the population and then picking uniformly at random

with replacement two decks to be crossed-over. It generates sufficiently many pairs to

regenerate the (1− p) fraction of the population that is being discarded.

Precondition: A list sorted by score representing the candidate solutions (of length n)

and an elitism parameter in (0; 1]

Postcondition: Output is two lists. The first list is of length benc and agrees with the

input population on each index. The second list is of length n− benc, and each element

is a pair of candidates. Both candidates are from the first output list.

3.1.4 Mutation

Figure 3.2: A high-level view of the mutation operator

Mutation is intended to mimic how players choose what they perceive as bad cards and

replace them with a different card. Originally, Mutation did not take into account a card

level utility, however, it was later added as the convergence rate was sub-par without it.

We shall consider the details of the final implementation only.

Given a candidate, we:

1. Flip a biassed coin, the odds of getting Heads are the same as the mutation proba-

bility input.

2. Return the original input unchanged if we get Tails, otherwise, we continue.

3. Choose an index for the card to change from a distribution that has f(x) = 1
450

x,

for x ∈ [0, 30] and 0 everywhere else as PDF.

4. Remove the card at the chosen index in a list of cards that has been sorted in

descending order by card utility score.4

5. Choose a valid5 card completely at random and attempt to add it to the deck.

6. Return the new candidate if we have exactly 30 cards, otherwise go back to 5.

4The chosen distribution has a PDF with a positive slope. Hence, we choose later indices with higher

likelihood and as such need to sort in descending order to ensure that lower scoring cards are more likely

to be replaced.
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Precondition: We are provided with a random number generator, a mutation probability

in (0, 1] and a candidate that has been evaluated.

Postcondition: The expected output represents a pair of a valid candidate and a random

number generator. The state of the random number generator must be different from

the input one. If the output candidate has a score, it must equal the input candidate.

Otherwise, they must differ by exactly one card.

3.1.5 Crossover

The crossover operator takes in a pair of decks and will output a single deck. It thus acts

to reduce the diversity of the population and forces it to converge to better candidates.

Our implementation works in the following manner:

1. Flip a coin, the odds of getting Heads is the crossover probability.

2. If we roll Tails, we then flip a new coin, the probability of Heads is proportional to

the deck score of the first input, and Tails respectively to the second.

3. If we get Heads, we return the first input, otherwise we return the second input.

4. If the first coin was Heads, i.e. we perform crossover, we compute the intersection

and differences of the two inputs in the set-theoretical sense.

5. The result automatically contains all the cards that are in both candidates.

6. For the cards in the differences we:

(a) Pick uniformly at random without replacement two cards, one from each set.

(b) We toss a coin, the probability of Heads is proportional to the first card score,

Tails to the second.

(c) Depending on the coin toss we add one or the other card to our return list.

(d) If either set becomes empty before the other, we copy over the remaining cards

into the returned list.

Until we have depleted both sets.

7. We concatenate the cards, check if we have 30 cards in the obtained deck, and return

if so.

8. If we have more than 30, we sort them by score and trim to 30.

9. If we have less than 30, we start adding random valid5 cards until we have 30.

A high-level overview of the crossover operator is provided in Figure 3.6 in Section

3.2.2 as it includes the mixed population scenario.

Precondition: The input is two valid decks that have the same in-game class and a

random number generator along with a crossover probability in (0; 1]

Postcondition: The output is:

5Valid according to all but the number of copies in the deck rule.
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• Either one of the inputs and a random number generator that has had its state

changed if the output has a score;

• Or a deck that contains all of the cards that are in the intersection of the inputs

and a random number generator with a changed state.6

3.1.6 Evaluating fitness

Figure 3.3: A high-level view of the evaluation operator

Fitness evaluation of candidates is performed in Java by running simulations where the

same AI plays candidate decks against baseline decks or other candidates.

In order to do this, we need to:

1. Create a connection to the Java server that will run simulations on our behalf.

2. Perform an RPC with the required simulation parameters that we generate at run-

time according to the current population.

3. Once we receive a result from the simulations, we parse it to deduce deck fitness,

and within each deck we deduce the card utility and update the values accordingly.

4. Finally, we sort the population in descending order according to fitness.

Precondition: The input is a list of valid candidates, some may be scored.

Postcondition: The output represents a list of candidates, each having a score associated

with it and sorted in descending order according to score.

Additionally, an optimisation was considered for the scenarios where we search for a

solution against a baseline. That is to evaluate the fitness only for candidates that have

been modified by either mutation or crossover. Since both operators erase the score, we

do not need to implement a new mechanism for tagging the candidates and instead would

only need to implement a method to filter out the candidates that do not have a score

value. To determine if this is worthwhile consider the following:

6Note that I make no claims about cards from the differences of decks as we might have a random

fill stage where cards may come from the outside. We can think of this as performing mutation on a

contiguous zone of genes.
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Given a population of size n and hyperparameters e,c,m for elitism, crossover prob-

ability and mutation probability respectively, we can determine the expected number of

candidates to be modified.

Crossover: On average (1− e)nc are subject to crossover.

Mutation: This operator works on the whole population and hence we expect mn candidates

to be mutated.

Both: To avoid double counting we subtract the value of candidates acted on by both

operators which we expect to be (1− e)nmc

Modified: Finally, we conclude that (1 − m)(1 − e)cn + mn candidates are expected to be

changed.

Figure 3.4: A comparison of expected runtime if we re-evaluate the whole population vs

only modified candidates.

From just the formula, it is unclear if it is worthwhile to pursue this optimisation. By

estimating the time taken on a single generation and computing the values for a given set

of hyperparameters we can find the relationship shown in Figure 3.4: For a representative

choice of hyperparameters, if we choose to simulate 200 games per candidate-baseline

pair, the estimated gain is considerable, i.e. on the scale of hours.

3.1.7 Altering the Java library

The Java library used provided an easy way to queue arbitrary amounts of simulations

given candidate decks, the AI that should play them and how many times it should play
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a pairing. The main issue was the GUI and game-logic code being tangled together.

Thankfully, the library is open-source which allowed me to modify it to work without

the GUI. The downside was the lack of code documentation which resulted in a bit of

reverse-engineering and some re-implementation of features according to the community-

maintained advanced rulebook.

The first step was to deduce how it queues games for a simulation batch7. By exam-

ining the GUI code for the Battle of Decks mode it was possible to reverse-engineer how

the library performed the equivalent of dynamic landscape evaluation, playing every deck

against every other deck a given number of times.

The original code created a Task which represents playing one game between two

players using a given deck each. It then proceeded to navigate the input list of decks

and queue in a Work Stealing Thread Pool the required number of games for each deck

pairing.

This works out-of-the-box for dynamic landscape evaluation. However, for static eval-

uation against a baseline we need to queue games against the decks in the baseline.

Therefore, the first modification was to create a new method, that along with the candi-

date decks and game configuration (AI type, number of games per pairing) took a baseline

as well. Then a trivial modification to the for-loop allowed me to queue the tasks that

play candidates against the baseline.

This trivial solution had the following unexpected result. It polluted the output statis-

tics regarding the performance of candidates by returning baseline statistics together with

candidate statistics with no identifiable features to distinguish between them. The solu-

tion to this is to add identifiable features. Each deck in the library has a name field that

can be populated as we wish via a setter. I have used the name field to tag candidates as

‘candidate’ and baseline decks as ‘baseline’. Before returning results to Haskell, I perform

a small post-processing where I filter out the statistics related to baseline decks.

Next, for the random baseline case, we want to generate random decks to test against.

The library already had a random deck generator hidden within it, and the extension was

simply to uniformly at random pick an in-game class for which we will generate a random

deck to include in the baseline.

Later in the project, I wished to include card level utility. The library already kept

track of how often each card is played. The issue with using this directly is that some

cards, due to being randomly drawn, might end up in the hand of the player more often

than others. Since cards that do not end up in the player’s hands cannot be played, we

need to normalise the number of times each card was played by the number of times the

card was drawn into the player’s hand. By adding a statistic to keep track of cards drawn

and a slight alteration to the return value, this new utility was included into the library.

This notion of card utility works in a similar fashion to the concept described by

players as dead cards. Cards that are dead are cards that are in the hand and are not

being played. If this happens, the number of times drawn will be incremented while the

number of times played remains unchanged, therefore reducing the card utility.

Next, the library had to be adapted to be a server that can accept Apache Thrift RPC

7Playing the same two decks against each other using the same AI for a given number of times



30 CHAPTER 3. IMPLEMENTATION

calls. The server itself is a trivial implementation that opens a port on the localhost.

When it receives an RPC call, it delegates it to a handler. So to be able to call Java from

Haskell to have simulations run for us, I needed to move the logic into the Handler.

Finally, I had to decide on a contract between Haskell and Java so that I could pass

the arguments easily. To avoid complications due to some features of Apache Thrift not

being fully implemented in Haskell, I decided to encode the data between them as Strings

in a Nested CSV format. Due to this choice of format, parsing and conversion on both

sides to the respective correct data types was fairly straightforward. The chosen grammar

for the communication of extra arguments is as follows:

<class> = ?all in-game classes?;

<id> = ?all cards in the card catalogue?;

<deck> = <class>,",",(<id>,",")30;

<int> = ?all positive integers?

<extraArgs> = (<deck>,",")+,(<int>|(<deck>,",")+)?

Here in the extra arguments, the first part is the description of the population and

the second part which is optionally included provides details regarding the baseline when

this is necessary. The implementation can be seen in Appendix A (SimulatedGameHan-

dler.java), method parseListOfDecks(...).

Now with regard to results, the format is thus:

<float> = ?double precision float numbers ∈ [0, 1]?

<result> = ((<id>,"|",<float>,",")1−30,":",<float>,",")+

The implementation of score updates can be seen in Appendix A (EvolutionCode-

ForHS.hs) function updateScores, in particular the cardScoreParse code.
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3.1.8 Glueing things together

Figure 3.5: A high-level overview of the Control Flow within the implemented solution.

Now that we have all of the building blocks, we want to chain them in a reasonable way

so that we may progress from one population to the next and find a solution.

The first step is to generate a correct initial population. It might be the case that

this random search generated a sufficiently good solution. Additionally, the requirement

for the input to selection is that the population is already evaluated, so our next step is

scoring.

To perform scoring, there is a small overhead related to translating the current popu-

lation into a format suitable for Java according to the grammar previously defined. Then

we create an instance of an Apache Thrift client that can connect to the Java server, and
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perform an RPC with the translated representation. We then wait for a return value for

the RPC and parse it to update our population. We sort our output before returning it.

Having parsed the results of the simulations, we check if we have found a sufficiently

good solution by peeking at the score of the head value in the population, returning the

found solution if that is the case. Note that this check also includes an error estimation

at 99% confidence using a two-tailed Gaussian test.

If we have not returned, the scored and sorted population is fed into selection. We

generate the first version of the next population by calling crossover for each selected pair

and concatenating the selected candidates and the offspring we have generated for them

by crossover.

We now have a population formed from the top candidates from the previous time-

step along with their offspring. We now map mutation across the population to avoid

premature convergence.

The result is fed back to evaluation to complete the cycle.

3.2 Extending to mixed populations

Extending to support the evolution of candidates that may be different in-game classes,

apart from some book-keeping related changes, forced only two major refactorings of the

single-class implementation. I needed to support a method of creating a population that

contains different classes and I needed to make sure that the only operator that worked

with more than one candidate at a time, which in our case is crossover, could cope with

generating, in a reasonable way, valid offspring decks for two input parent decks.

3.2.1 Initial population

The initial population generation has simply gained one level of indirection. To obtain

a mixed population containing candidates for each in-game class, we need to call the

generator for a single class once for each class. To avoid having to input the classes, we

can have a class index containing the possible valid values, hence:

genMixedPopulation :: [Int] -> [Int] -> [Deck]

genMixedPopulation ns seeds =

assert ((length ns) == 9)

(assert ((length seeds) == 9)

(genMixedPopulation’ ns seeds (tail heroClassIndex)))

genMixedPopulation’ :: [Int] -> [Int] -> [String] -> [Deck]

genMixedPopulation’ [] [] [] = []

genMixedPopulation’ ns seeds heroindex =

(genPopulation (head ns) (head heroindex) (head seeds))

++

(genMixedPopulation’ (tail ns) (tail seeds) (tail heroindex))
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Note that the genPopulation is the previously defined method that generates a pop-

ulation for a single in-game class.

3.2.2 Crossover

Figure 3.6: A high-level view of the crossover operator. The number in the genes is used

to uniquely identify them. Gray genes represent cards that are class-neutral and coloured

genes represent class-specific cards. Different colours represent different in-game classes.

The generalisation of crossover to allow mixed populations was not as straightforward as

the initial population. We needed a way of choosing an in-game class for the offspring,

and as such a notion of a class dominating at crossover over a different class. To perform

this a new utility was computed, that of a class. This new utility was defined as the

average fitness of a candidate of that in-game class. We do not need to worry that this

utility is undefined when there are no candidates from a specific in-game class as we only

need it for crossover. If in the future this becomes an issue, it can be smoothed by having

a virtual candidate with fitness equal to the average fitness of the whole population for

each in-game class to avoid the undefined values due to divisions by 0.

Armed with this new utility we can define what it means to choose a class for an

offspring in crossover and we can formulate the operator:

1. Check if the pair to be crossed over is for parents of different in-game classes.

2. If they are for the same in-game class, we can use the previously defined crossover

operator.

3. If they are for different in-game classes, we flip a coin biassed by the class scores to

choose the class of the offspring.

4. We separate the parents into class-specific and class-neutral cards.

5. We add the class specific cards for the parent that we determined with the coin flip.

6. For the class-neutral cards, we perform crossover as previously defined.

7. We add the neutral crossed-over cards to the class specific cards.

8. If we have exactly 30 cards we return the resulting offspring.
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9. If we have more than 30 cards, we sort them by score and trim to 30 by dropping

cards from the end.

10. If we have less than 30 cards, we add valid cards at random until we have exactly

30.

The reason why we don’t add the class-specific cards to the neutral cards of the chosen

parent and crossover those for a first approximation of the offspring is to induce a class-

card bias in the algorithm as class cards are generally more powerful. This decision is, of

course, a heuristic.

Precondition: The input is two valid decks and a random number generator along with

a crossover probability in (0; 1]

Postcondition: The output is:

• Either one of the inputs and a random number generator that has had its state

changed if the output has a score;

• Or a deck that contains all of the class-cards of the parent that shares an in-game

class with the offspring along with all of the neutral cards that are in the intersection

of the neutral cards of the inputs, and a random number generator with a changed

state.



Chapter 4

Evaluation

In this chapter, we will explore the results of the algorithm in terms of ability to find a

solution, time required to find a solution, and numerical quantification of optimisations

performed. We will also look at the impact of the genetic algorithm hyperparameters

(here elitism, mutation and crossover probabilities), however, we will not attempt to find

the optimal ones as that generally requires an additional algorithm that is able to learn

the optimal choices.

4.1 Random baseline

For a randomly generated baseline, the results are for the following configuration:

• 200 game match simulations per pair for fitness estimation;

• 60 % Elitism, 10 % Mutation probability, 80 % Crossover probability

• Homogeneous populations of 50 candidates and 20 runs per in-game class

• Heterogeneous populations of 12 candidates per class (108 total) and 20 runs

• The algorithm was allowed to run for at most 100 generations

As such 200 runs of the algorithm were performed. Each one found a solution within a

single generation. The best candidate in the first generation was found to have an average

win-rate of 71.7%±13.6%, where the quality cut-off is 59.1% to determine that the found

candidate is good enough when running 200 simulations per pair.

This result is equivalent to stating that with high likelihood a solution to the core

problem can be found by random search guided by the following heuristic: when con-

structing a random deck of cards first choose with equal probability whether the card to

be added is class-specific or not.

4.2 Predefined baseline

When performing a search for good enough candidates against a user-provided baseline,

the following configuration was used:

35
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• 200 game match simulations per pair for fitness estimation;

• 40 % Elitism, 10 % Mutation probability, 80 % Crossover probability

• Homogeneous populations of 100 candidates and 20 runs per in-game class

• Heterogeneous populations of 12 candidates per class (108 total) and 20 runs

• The algorithm was allowed to run for at most 100 generations

• The baseline was constructed to represent the most popular card choices in the

month of December according to [13].

Figure 4.1: An estimation of the CDF of the convergence of the algorithm against a user

baseline with hyperparameters: e = 0.4,m = 0.1, c = 0.8

During these runs, I have found that the algorithm converges, i.e. finds a solution accord-

ing to the quality criterion, at the 100th generation with 95.5%± 3.8% likelihood, and it

took on average 37.4± 60.7 generations to converge.
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Figure 4.2: An estimate of candidate fitness evolution against the number of generations.

Since the data was generated with 200 simulations per candidate-baseline pair, the quality

cut-off is 59.1%. Note that the errors are due to a combination of variable number of

sample points per generation and the natural variance of the values we are measuring.

From Figure 4.2 we can see that most of the quality increase was within the first 10

generations, and the maximum fitness value stops increasing by much towards the 60th

generation. This logarithmic behaviour is expected and is evidence that a higher quality

threshold than the one attempted here might be exponentially harder to achieve.

Additionally, an issue with the approach was found in the form of stale populations.

If we look at the last 10 generations in Figure 4.2 we can see that there is little variance

between the elite average, elite minimum and the population maximum (the missing error

bars are not relevant for this comparison as the algorithm treats non-maximum scores

as if they were known perfectly). When there is little variance within the elite section

of the population, crossover creates only clones due to how it was implemented. Making

progress is then only attainable via mutation. In these scenarios when only selection

and mutation work, we are performing a slower version of hill-climbing within the search

space. A potential solution that was not explored was to attempt using a different selection

operator or treating cloned candidates only once as they have the same genetic material.

Finally, to validate the choice of only reevaluating the fitness of the part of the popu-

lation that has been modified, I have measured run-time of the first generation, where we

always must evaluate the whole population, to use as an estimate for the non-optimised

code, and I have measured the run-time of all post-first generations to quantify the opti-

misation. The results can be seen in Figure 4.3 and are as expected.
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Figure 4.3: A comparison of optimised and unoptimised run-time lengths. The coloured

regions represent the respective confidence intervals.

4.3 Dynamic landscape

For dynamic landscape evolution the following configuration was used:

• 100 game match simulations per pair for fitness estimation;

• 60 % Elitism, 10 % Mutation probability, 80 % Crossover probability

• Heterogeneous populations of 12 candidates per class (108 total) and 20 runs

• The algorithm was allowed to run for at most 20 generations

The reduced number of maximum generations was due to time constraints. In real-

world time, 20 generations for this configuration translates to an expected maximum of

24 hours per run.

As expected at a maximum of 20 generations the convergence rate was rather small at

15% ± 20.5%. This was, nevertheless, a worthwhile computation as we can still observe

what in-game classes survive within the simulation. These results can be seen in Figure

4.4.
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Figure 4.4: The population dynamic as generations progress coloured as a function of the

candidate’s in-game class. This provides a perspective in what classes are easier to play

more efficiently for a greedy Board State Value AI.

From Figure 4.4 we can see that the Mage in-game class quickly starts to dominate

populations. This phenomenon is expected as with regard to basic cards (cards provided

for free to all players) the best methods to control the board state are given to the

Mage class via cards that can be used both offensively and defensibly. This provides an

advantage to the type of game playing AI that was used as part of the project. Of future

interest might be an investigation into how cards chosen by the algorithm vary when we

choose different types of AI for the simulation framework.

Additionally, the behaviour of candidate fitness is a slow convergence towards a pop-

ulation that has candidate fitness clustered at 50% as can be seen in Figure 4.5. This is

expected in a dynamic evolution algorithm as by raising the quality of candidates we also

raise the quality of the baseline we test against. In such scenarios convergence is attained

when picking any candidate is as good as picking any other candidate solution from the

population.
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Figure 4.5: The evolution of candidate fitness in dynamic evolution exhibits a tendency

towards an equi-fit population. Error bars are shown at 99% confidence for a two-tailed

Gaussian test.

4.4 Exploring the impact of hyperparameters

For the purpose of determining the impact of hyperparameter choice on how fast the

algorithm finds a solution the following configuration has been used:

• 200 game match simulations per pair for fitness estimation;

• 40 % Elitism, 10 % Mutation probability, 80 % Crossover probability, when the

respective hyperparameter is not the current control one.

• Homogeneous populations of 100 candidates, in-game class Mage, 20 runs per control

value of hyperparameter

• The algorithm was allowed to run for at most 100 generations

• The baseline was constructed to represent the most popular card choices in the

month of December according to [13].

Due to the reduced dataset, comparing the convergence of the algorithm under different

sets of crossover, mutation and elitism directly was not an option. To work around this,

the following method was used. The CDF of the convergence of the algorithm exhibits

a logistic S-curve shape as seen in Figure 4.1. We can use this to our advantage and
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compare how the slope of the S-curve varies. We do this by performing linear regression

for the values that are different from 0 and 1. We assume the slope of the line of best fit

to be an estimate for the slope of the S-curve. We use the median number of generations

required for convergence for a notion of where the curve switches from being at 0 to being

at 1. The median has to be scaled by the speed-up factor, the gain we obtain from our

reduced re-evaluation under a given set of hyperparameters, because the time required

per generation in real-world terms depends on the choice of hyperparameters.

Figure 4.6: Speed-up factor due to evaluating only changed candidates under different

choices of crossover, mutation and elitism.

From this Figure 4.6, we can immediately see that we might want to keep mutation

and crossover low while we keep elitism high to maximise the gain from the optimisation.

This might, however, hinder the ability of the algorithm to find a solution, since such

settings would reduce the number of fresh candidates we create at each generation. In

Figure 4.7 we can see how the slope and location of the jump within the S-curve vary with

different values of the hyperparameters. A worked example detailing how these values are

computed is provided in Appendix B.

While the perspective here is fairly restricted, we can still observe the impact in

broad terms. Mutation, which in the context of being used only with selection, is effec-

tively randomised parallel hill-climbing. A higher mutation is synonymic with performing

hill-climbing for more candidates; the price is, of course, a reduced speed-up from the
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(a) Elitism

(b) Mutation

(c) Crossover

Figure 4.7: The impact of elitism, mutation and crossover in that order on the slope (blue)

and location of the jump (orange, shaded region represents the confidence interval at 99%

confidence using a two-tailed Gaussian test) of the S-curve shaped CDF of convergence.
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optimisation, however, we can see from Figure 4.7 that the reduced speed-up is less than

the gain from a larger mutation converging faster in terms of a number of generations.

Crossover is tightly coupled with selection and hence with elitism within this project

due to design choices as it only affects regenerated candidates. A low crossover means

we will clone more of the good candidates to regenerate the missing population while a

higher crossover will generate more new candidates. As such we wish a higher crossover to

ensure we do not degenerate into stale populations as previously discussed in this chapter.

This is loosely confirmed by both a higher slope as well as a closer centre at c = 0.85.

Elitism provides a free ticket for good candidates to persist across generations. The

smaller the elitist generation, the more impact from the few that are within this section.

On the other hand, the higher the elitist portion, the fewer candidates are generated by

crossover, and hence, we might explore the search space too slowly. This can be observed

also from the multi-peaked behaviour of both the slope and centre of the convergence

CDFs when varying elitism.

This provides an intuition regarding the trade-offs we have to take when choosing

these parameters. Of future interest might be generalising these observations regarding

speed-up factor, convergence rate and median number of generations until convergence

into a fitness function. This would allow us to run a more traditional genetic algorithm

implementation to determine the optimal choice.
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Chapter 5

Conclusion

This dissertation explored the problem of building decks within Hearthstone, a Collectible

Card Game, and has provided an implementation of an algorithm that is able to produce

viable decks by means of a Genetic Algorithm. The core objective was to find decks that

are viable1 against a baseline of random decks. As part of the Evaluation, we have found

that the core objective was easier than anticipated, in particular that it was consistently

solved via random search. Nonetheless, the core objective was successfully implemented.

We then explored possible extensions. One such extension was providing the user

with the tools to provide meta-game descriptions, which represent the decks played by

opponents. We used this context as a baseline against which to find solutions. This task

did utilise the genetic operators to explore the search space as it proved more difficult

than the core objective. As we have seen in the previous chapter, this extension was

implemented successfully and solutions are found with high enough likelihood.

Next, we considered mixed populations. This reduces the knowledge required from

the user as input by adding an additional degree of freedom to the search space. This was

not thoroughly explored due to time constraints, but this feature looks promising as it

can offer insight into biases that are introduced when choosing a game-playing AI. During

Evaluation, we have seen in Figure 4.4 that the AI which we used (a Greedy Board State

Value based AI) had a strong preference towards the Mage in-game class.

Finally, this project explored the use of optimisation techniques not taught as part

of the courses offered during the Computer Science Tripos. In particular the use of

Genetic Algorithms without the option of using binary string encodings. This required

grasping the algorithm and its workflow correctly so that it may be implemented using

a sufficiently expressive structure. The project also provided a good platform to explore

the importance of using domain knowledge appropriately to guide the algorithms towards

interesting solutions within reasonable time.

1In this context ‘viable’ is synonymous to ‘having a win rate of more than 50% at 99% confidence

under a Gaussian two-tailed test.

45



46 CHAPTER 5. CONCLUSION

5.1 Further work

This project successfully explored solving the problem of deck building using a genetic

algorithm. We have made use of domain knowledge to improve the algorithm running

time. However, there is still room for improvement.

• Improving the initial guess:

1. The first improvement would be to add a bias via a card score at the

catalogue level. This could be done using statistics from sites such as

“www.hearthpwn.com” with regard to how often a card is used. The scores

might have to be manually rebalanced to more appropriately represent the

current state of the game.

2. A different method would be to employ a deck type classifier and a soft cluster-

ing algorithm to partition the catalogue by deck type. The assumption is that

cards within the same cluster interact in positive rather than negative ways

with each other. We can then build candidates randomly only up to a point,

at which we try to classify them and bias the following cards depending on the

tag. Effectively trying to create a form of self-fulfilling prophecy in the hope

of card-level consistency in choices.

3. The final method of improving the initial population that I propose is using

the other idea mentioned in Preparation as a potential solution to the problem.

That is, we learn card combinations that work well together, and card combi-

nations that work well together against a specific opponent deck. We then use

this algorithm to build the initial candidates by choosing pairs and triplets of

cards, potentially combining with the previous two suggestions. Do note that

this suggestion might provide the deck type classifier as a side-product.

• Different AI implementations:

The other shortfall of the project is the use of a Greedy Board State Value AI.

The decision was taken to ensure that sufficient simulations can be run. As such,

another improvement would be to create an optimised Monte Carlo Tree Search

based AI for Hearthstone and use this new AI within the context of this project.

This would remove the bias that a Greedy AI brings to the table. More specifically,

a Greedy AI is unable to look more than one board state step ahead and decks

that rely on counter-intuitive strategies such as Handlock where we wish to take

damage, something seen as a negative utility by the Greedy AI. A better AI would

allow us to find decks that make use of long-range strategies that work well against

a proposed baseline.

Additionally, a better AI could provide better meta-game shifts predictions when

used together with dynamic landscape evolution. Sadly, as was previously seen, this

type of evolution is considerably more time consuming as the number of pairs to be

estimated grows as O(n2) in the size of the population, and could remain intractable

until improvements are done towards the time-efficiency of game-playing AI.
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• Optimising hyperparameters:

Another point of interest could be the hyperparameters and operators. While we

explored the impact of the hyperparameters on the convergence and convergence

rate of the solution, we did not attempt to optimise these choices. The intuition

provided here coupled with an additional optimisation refinement algorithm could

be used to learn the best choices of mutation, crossover and elitism. Of course, this

could also be paired with an additional dimension of choosing the selection operator

type as well. This latter suggestion is mostly as an idea of combating the issue of

stale populations that can occur with elitist selection.

Finally, the project provided an interesting setting to unite algorithmic and domain

knowledge to obtain results under time constraints and provided interesting insight into

the game structure itself. Some of the results that we did not focus on during this project

aligned fairly well with community predictions or complaints, such as some of the most

used cards by the AI are those that people complain are ‘broken’ or consider ‘overpowered’.

It would be interesting to see if such insight could be coupled with and used during the

Quality Assurance process of the game development cycle.
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Appendix A

Source Code

A.1 EvolutionCodeForHS.hs

-- Trimmed for Apendix --

-- This represents only part of the source code that may be referenced from the dissertation text --

-- Helper functions to load the cards, create random decks

-- The type signatures for the game speciffic data, aka. Chromosome structure

type Card = (String,String,Integer)

type Deck = (String, DeckCards)

type DeckCards = [((Card,Integer),Double)]

type Catalogue =[[Card]]

type ScoredDeck = (Deck, Maybe Double)

type ScoredClassIndex = [(String, Double)]

type ScoredClassIndexUnnormed = [(String, Double, Int)]

-- Trimmed --

-- Random generation of a deck

genEntity :: (RandomGen g) => String -> g -> (Deck,g)

-- On average I am offering 10 retires per card,

-- this is in case we get a rndGen that will become stale and try to add the same card endlessly

genEntity heroClass rnd = genEntity’ rnd (filterByClass heroClass catalogue) (heroClass,[]) 0 300

genEntity’ :: (RandomGen g) => g -> Catalogue -> Deck -> Integer -> Integer -> (Deck, g)

-- In case we run out of tries, we reset, also, I know I am hacking based on my own data structs

genEntity’ rnd catalog _ _ 0 = genEntity’ rnd catalog ((\(x,_,_) -> x) (head ((catalog !! 1))),[]) 0 300

genEntity’ rnd _ deck 30 _ = (deck, rnd)

genEntity’ rnd catalog deck count tries =

genEntity’ rnd’’ catalog deck’ count’ (tries-1)

where

(cardToAdd, rnd’) = getRandomCard rnd catalog

(copiesToAdd, rnd’’) = randomR (1,2) rnd’

deck’ = if (copiesToAdd == (2::Int))

then (fst deck,(addToDeck cardToAdd (addToDeck cardToAdd (snd deck))))

else (fst deck,(addToDeck cardToAdd (snd deck)))

count’ = cardCount deck’

-- Trimmed --

-- For mutation choose a card to mutate from a triangular distribution,

-- assuming cards sorted by score, and replace with high likelihood a low scoring card.

mutation :: (RandomGen g) => Double -> g -> ScoredDeck -> (ScoredDeck, g)

mutation mutProb rnd candidate =

if (roll < mutProb)

then assert ((cardCount (fst resulting)) == 30) (resulting, rnd’’’)

else (candidate, rnd’)

where

scorelessDeck = fst candidate

51
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hero = fst scorelessDeck

cards = mergesort (\(_,x) (_,y) -> x >= y) (snd scorelessDeck)

catalog = filterByClass hero catalogue

(roll, rnd’) = randomR (0.0,1.0) rnd

--We want to transform a uniform distribution on (0,1)

-- into one that ramps up to the maximum value, we can still get 0 from the discritization!

n = (fromIntegral ((length cards) - 1))::Double

(fValue, rnd’’) = randomR (0.0, 1.0) rnd’

mutatedCardIndex = floor(n * sqrt(fValue))

mutatedCard = (fst . fst) $ cards !! mutatedCardIndex

(finalCards, rnd’’’) = fillTo30 rnd’’ hero (removeFromDeck mutatedCard cards)

resulting = ((hero, finalCards),Nothing)

-- For crossover, copy over all overlapping cards, for the remaining ones, flip a biased-by-card-score coin and choose.

-- For mixed populations the hero toss is biased by hero score.

crossover :: (RandomGen g) => g -> Double -> ScoredDeck -> ScoredDeck -> ScoredClassIndex -> (ScoredDeck, g)

crossover rnd crossProb parentA parentB index =

if (((fst.fst) parentA) == ((fst.fst) parentB))

then (crossoverMono rnd crossProb parentA parentB)

else (crossoverMixed rnd crossProb parentA parentB index)

crossoverMixed :: (RandomGen g) => g -> Double -> ScoredDeck -> ScoredDeck -> ScoredClassIndex -> (ScoredDeck, g)

crossoverMixed rnd crossProb parentA parentB index =

if (roll < crossProb) then

(let

(hero,rnd’’) = selectRndOutOfTwo rnd’ heroA heroB (getClassScore heroA index) (getClassScore heroB index)

firstTry = if (hero == heroA)

then (deckConcat (deckConcat overlap classA) mixed)

else (deckConcat (deckConcat overlap classB) mixed)

(mixed, rnd’’’) = mixRndCards rnd’’ neutralJustA neutralJustB

howMany = (cardCount (hero,firstTry))

in

if (howMany == 30) then (((hero,firstTry), Nothing), rnd’’’) else

(if (howMany > 30) then (((hero, trimTo30 firstTry), Nothing), rnd’’’) else

let

(filled, rnd’’’’) = fillTo30 rnd’’’ hero firstTry

in

(((hero, filled), Nothing), rnd’’’’)

))

else

if (parentRoll < (fromMaybe 0 (snd parentA))) then (parentA, rnd’’) else (parentB, rnd’’)

where

(classA,neutralA) = filterClassCards (fst parentA)

(classB,neutralB) = filterClassCards (fst parentB)

(overlap,neutralJustA,neutralJustB) = findOverlap neutralA neutralB

heroA = (fst.fst) parentA

heroB = (fst.fst) parentB

(roll, rnd’) = randomR (0.0, 1.0) rnd

(parentRoll, rnd’’) = randomR (0.0,(fromMaybe 0 (snd parentA)) + (fromMaybe 0 (snd parentB))) rnd’

-- Trimmed --

-- The old crossover implementation for homogeneous populations

crossoverMono :: (RandomGen g) => g -> Double -> ScoredDeck -> ScoredDeck -> (ScoredDeck, g)

crossoverMono rnd crossProb parentA parentB =

if (roll < crossProb) then

let

(overlap,mixA,mixB) = findOverlap cardsA cardsB

(mix,rnd’’’) = (mixRndCards rnd’’ mixA mixB)

result = deckConcat overlap mix

in

assert ((cardCount (hero,result)) == 30) (((hero,result),Nothing), rnd’’’)

else

if (parentRoll < (fromMaybe 0 (snd parentA))) then (parentA, rnd’’) else (parentB, rnd’’)

where

hero = fst (fst parentA)

cardsA = snd (fst parentA)
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cardsB = snd (fst parentB)

(roll, rnd’) = randomR (0.0, 1.0) rnd

(parentRoll, rnd’’) = randomR (0.0,(fromMaybe 0 (snd parentA)) + (fromMaybe 0 (snd parentB))) rnd’

-- Trimmed --

-- evolution step: select -> crossover/mutate -> return next generation

-- We assume the population to have been sorted before this is called

evolutionStep :: Int -> [ScoredDeck] -> Double -> Double -> Double -> [ScoredDeck]

evolutionStep seed population elitism crossProb mutProb =

assert ((length mutated) == size) mutated

where

rnd = mkStdGen seed

size = length population

toTake = (floor(elitism * (fromIntegral size)))

-- First selection result is here

workingPop = take toTake population

-- And this is the result of piping the second result of selection into crossover

(crossed, rnd’) = crossGenerate rnd crossProb (size - toTake) (genClassScores population) workingPop

(mutated, rnd’’) = mapWithRandom rnd’ (mutation mutProb) (workingPop++crossed)

-- For scoring we call the Java server for the data.

-- We only forward non-scored decks when running against a baseline.

score :: I.Int32 -> Operation -> String -> [ScoredDeck] -> IO [ScoredDeck]

score nrGames op args decks = do

let (unscored, scored) = filterUnscored decks

newScored <- case (unscored) of

[] -> return []

_ -> (do

updatesPacked <- clientFunc op nrGames (LT.pack ((printPopulation unscored)++" "++args)) -- Java call

let updates = LT.unpack updatesPacked

let freshScored = (updateScores updates unscored)

return (assert ((length freshScored) == (length unscored)) freshScored))

return (mergesort (\(_,x) (_,y) -> x >= y) (newScored++scored))

-- Trimmed --

-- Function that takes the result from the Java call and updates the Haskell structure accordingly

updateScores :: String -> [ScoredDeck] -> [ScoredDeck]

updateScores scores decks = updateScores’ (map read (snd partialParse)) cardScoreParse decks []

where

partialParse = (debraid (map (splitOn (==’:’)) (splitOn (==’,’) scores)))

cardScoreParse =

(map

(map (\(x, y) -> (x, read y::Double)))

(map

(map tuplify2)

(map

(map removeEmpty)

(map

(map (splitOn (==’|’)))

(map

(splitOn (==’;’))

(fst partialParse)

)

)

)

)

)

-- This function updates the deck score

updateScores’ :: [Double] -> [[(String, Double)]] -> [ScoredDeck] -> [ScoredDeck] -> [ScoredDeck]

updateScores’ [] [] [] updated = updated

updateScores’ [] [] _ updated = updated

updateScores’ _ [] [] updated = updated

updateScores’ (s:xs) (cs:zs) (deck:ys) updated =

updateScores’ xs zs ys ((updateCardScores cs (fst deck), Just (s * 100.0)):updated)
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-- This function recursevly finds each decks cards and updates the scores

updateCardScores :: [(String, Double)] -> Deck -> Deck

updateCardScores [] deck = deck

updateCardScores (cardScore:xs) (hero,cards) = updateCardScores xs (hero,(updateSingleCard cardScore cards))

-- This function updates a card score given a card id

updateSingleCard :: (String, Double) -> DeckCards -> DeckCards

updateSingleCard _ [] = []

updateSingleCard (id, score) (((card,copies),score’):deck) =

if (id’ == id)

then (((card,copies),score):deck)

else (((card,copies),score’):(updateSingleCard (id, score) deck))

where id’ = ((\(_,y,_) -> y) card)

-- Trimmed --

-- Function used to determine if we found a good enough candidate/entity,

-- it uses an estimate for the error margin at 99% confidence for

-- a given population size and updates the required min score.

-- To be used as "let isPerfect = isSufficient <some n>"

-- Maybe bring the 50 up to be changeable, or increase it? evolution is usually only 1-2 steps with 50%

isSufficient :: Integer -> Double -> Bool

isSufficient n score =

if (score > criterion)

then True

else False

where criterion = 50.0 + ((2.5759 * sqrt(normScore * (1-normScore) / (fromIntegral n))) * 100.0)

normScore = (score / 100.0)

-- From central limit theorem, 2.5759 is the Z number for 99% confidence

-- Used as a stop criterion when running dynamic evolution, it is saying that the minimum and maximum

-- fitness are close enough to be considered the same.

deltaMinMaxIsSmall :: Integer -> Double -> Bool

deltaMinMaxIsSmall n delta =

if (delta < criterion)

then True

else False

where criterion = fromRational ((2.5759 / (2.0 * (toRational $ 2 * sqrt (fromIntegral n)))) * 100.0)

-- Function to know when to stop

stopCriterion :: Integer -> (Double -> Bool) -> Double -> Integer -> Bool

stopCriterion maxGeneration isPerfect score generation =

if ((isPerfect score)||(generation >= maxGeneration))

then True

else False

-- Trimmed --
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A.2 SimulateGameHandler.java

// Trimmed to include only interesting functions referenced from the dissertation

/**

* Parse a string into a list of decks. Assumes a CSV format.

*

* @param mode The string used to tag the parsed decks. We use this to distinguish

* Baseline and Candidate decks.

* @param listAsString The CSV formated string that includes the description of the decks.

*/

private static List<Deck> parseListOfDecks(String mode, String listAsString) {

List<Deck> collection = new ArrayList<>();

int j = 0;

for (String deckDesc : listAsString.split(";")) {

String[] deckAsList = deckDesc.split(",");

// The first thing in a deck description is the hero.

Deck deck = new Deck(HeroClass.valueOf(deckAsList[0]));

// The name of the deck is just the order in which we provide them.

deck.setName(mode + Integer.toString(j++));

// To add cards, we request a reference to the collection and mutate it.

CardCollection deckCardCollection = deck.getCards();

for (int i = 1; i < deckAsList.length; i++) {

// We assume to be provided valid descriptions so we do not perform validation.

Card cardToAdd = CardCatalogue.getCardById(deckAsList[i]);

if (cardToAdd != null) {

deckCardCollection.add(cardToAdd);

} else {

logger.error("Card not found for id: " + deckAsList[i]);

}

}

collection.add(deck);

}

return collection;

}

/**

* Run evaluation of fitness of decks given a baseline to test against.

*

* @param battleConfig The configuration of the simulation.

* @param baseline The decks that we optimise against.

*/

protected String runTestAgainstBaseline(BattleConfig battleConfig, List<Deck> baseline) {

result = new BattleResult(battleConfig.getNumberOfGames());

logger.info("Battle of Decks started");

ExecutorService executor = Executors.newWorkStealingPool();

List<Future<Void>> futures = new ArrayList<>();

//Queue up tournament play

for (Deck deck1 : battleConfig.getDecks()) {

for (Deck deck2 : baseline) {

for (int i = 0; i < battleConfig.getNumberOfGames(); i++) {

PlayGameTask task = new PlayGameTask(deck1, deck2, battleConfig.getBehaviour());

Future<Void> future = executor.submit(task);

futures.add(future);

}

}

}

//Queue up a shutdown event to collect results

//Removed boiler-plate code for apendix

logger.info("Battle of Decks finished");

return printToString();

}

/**

* Method that runs a full tournament play-off to determine absolute fitness.
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*

* @param battleConfig The configuration we are testing

*/

protected String runFullTournament(BattleConfig battleConfig) {

result = new BattleResult(battleConfig.getNumberOfGames());

logger.info("Battle of Decks started");

ExecutorService executor = Executors.newWorkStealingPool();

List<Future<Void>> futures = new ArrayList<>();

HashSet<Deck> processedDecks = new HashSet<>();

//Queue up tournament play

for (Deck deck1 : battleConfig.getDecks()) {

processedDecks.add(deck1);

for (Deck deck2 : battleConfig.getDecks()) {

if (processedDecks.contains(deck2)) {

continue;

}

for (int i = 0; i < battleConfig.getNumberOfGames(); i++) {

PlayGameTask task = new PlayGameTask(deck1, deck2, battleConfig.getBehaviour());

Future<Void> future = executor.submit(task);

futures.add(future);

}

}

}

//Queue up a shutdown event to collect results

//Removed boiler-plate code for apendix

logger.info("Battle of Decks finished");

return printToString();

}

/**

* Method used to print to System.out the results of the simulation.

*/

private String printToString() {

StringBuilder stringBuilder = new StringBuilder();

result.getDeckResults().stream()

.filter(candidate -> !candidate.getDeckName().contains("baseline"))

.sorted((p1, p2) ->

(Integer.parseInt(p1.getDeckName().substring(9)) > Integer.parseInt(p2.getDeckName().substring(9))) ? 1 :

(Integer.parseInt(p1.getDeckName().substring(9)) == Integer.parseInt(p2.getDeckName().substring(9))) ? 0 :

-1)

.forEach(candidate -> {

List<Card> deck = result.getDecks().get(candidate.getDeckName()).toList();

if ((deck != null) && (deck.size() > 0)) {

for (Card card : deck) {

String id = card.getCardId();

double score = ((double) candidate.getDeckStatistics().getCardsPlayed().getOrDefault(id, 0))

/ ((double) candidate.getDeckStatistics().getCardsDrawn().getOrDefault(id, 1));

stringBuilder.append(id).append("|").append(score).append(";");

}

if (stringBuilder.length() > 0) stringBuilder.setLength(stringBuilder.length() - 1);

}

stringBuilder.append(":").append(candidate.getWinRate()).append(",");

});

String scores = stringBuilder.substring(0, stringBuilder.length() - 1);

logger.info("Scores: " + scores);

return scores;

}



Appendix B

Worked example: Estimating the

rate of convergence of the algorithm

Figure B.1: Here we can see the CDFs for the algorithm for different values of crossover.

The error bars are provided at 99% confidence under a two-tailed Gaussian test. As we

can see, we do not have sufficient data to compare the CDFs directly in a meaningful way

In Figure B.1, we can see why a direct approach does not work for our dataset.

One obvious solution is to generate more data. Due to time constraints, this was not a

possibility. One thing we can notice in both Figure B.1 and Figure 4.1 is that the CDFs

follow an S-curve shape. We will use this to compare them indirectly.

Firstly, we want to know where the curve switches from being constantly at 0 to being

at 1. We obtain this by removing all data points except the last one where the estimated

57
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(a) Determining the region where the S-curve switches from 0 to 1

(b) Performing linear regression on the region of interest.

Figure B.2: The CDF for e = 0.4, c = 0.8, and m = 0.35, where we control the value of

mutation. Determining the region of interest and performing linear regression to estimate

the slope and using the line of best fit to find the generation at which the value of the

CDF is 0.5.
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value is 0 and all points except the first one where the estimated value is 1. On the

remaining data points, we perform linear regression to find a line of best fit. We use the

slope of the line as an estimate for the slope of the S-curve and therefore as an estimate

of the rate of convergence of the algorithm. In our example here, the line of best fit is:

f(x) = 0.0582x− 0.0489. Therefore, we estimate the rate of convergence to be 0.0582.

Next, we solve 0.5 = 0.0582x− 0.0489 to find x ≈ 9.43, this will represent our median

number of generations required for convergence. However, this value is not comparable

as we have an optimisation that changes the real-world time required per generation.

To make the values comparable we have to normalise the value we found by multiplying

them by the speed-up factor. We can see a plot of the speed-up factor in Figure 4.6,

which has the following formula: 1
(1−m)(1−e)c+m

. For e = 0.4, c = 0.8, and m = 0.35 the

factor is approximatively 1.5105. So the comparable median number of generations until

convergence becomes: 14.24

To determine the confidence interval for the median number of generations until con-

vergence we perform the following: For each data point we have estimating the CDF,

we replace it by its value plus the error in its value to create a new data series. We

repeat this process but instead of adding error to the data point values, we subtract it

generating a 3rd series. We perform linear regression on the same region as when we

estimated the value of the median. We can see this in Figure B.3. For this example, we

solve 0.5 = 0.0549x+0.1737 and 0.5 = 0.0616x−0.2716 to obtain x ≈ 5.94 and x ≈ 12.53.

Normalising these values as we did before we obtain: x ≈ 8.97 and x ≈ 18.92
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(a) Linear regression on the CDF plus error.

(b) Linear regression on CDF minus error.

Figure B.3: Finding the confidence interval for the median number of generations until

convergence.
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Project Proposal

Profir-Petru Partachi
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ppp23
Part II in Computer Science Project Proposal

Deck building in Hearthstone

15 Oct 2015
Project Originator: Profir-Petru Partachi

Project Supervisor: Sean Holden

Director of Studies: Tim Griffin

Overseers: Richard Gibbens and Larry Paulson

Introduction and Description of the Work

A strategy card game is a category of games that have several features in common:

1. It is a game usually between two parties, each of which has a set of cards, referred

to as deck;

2. There is a known way of obtaining a resource which is used to play cards;

3. The cards have a cost and text associated with them;

4. Unless otherwise specified, the text of a card is interpreted when the card is played.

Usually when tackling strategy card games, it is attempted to solve the problem of

creating an algorithm that, given a deck, learns to play optimally against different oppo-

nents. This project, however, aims to tackle the less considered aspect of strategy card

games, the process of selecting and optimising the selection of cards to play.

Since strategy card games differ in rules of both how to play and how to build a deck

that can be used in matches, the main focus will be on one of the more simple games,
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Hearthstone. For the purpose of this introduction, we shall consider the game matches

themselves as black-boxes and focus on the deck-building aspect.

The deck-building aspect of the game consists of a few choice points.

Firstly, a class must be picked out of 9 existing ones. This choice limits the cards that

we can use, and as a consequence the combination of cards that we can chain together.

To reduce the complexity of the problem, the initial attempt will focus on the situations

where the class is provided as input. If time allows, the situation where the class choice

can also be optimised will be tackled as an extension.

Next, once a class is chosen, 30 cards are selected out of a set of class specific and

neutral cards (that can be used by all 9 classes). The rule governing card choices is:

Cards can be chosen at most twice, except if they are of legendary rarity, which can be

used at most once.

Therefore for our purposes it will suffice to consider only two types of cards: legendary

and non-legendary.

After choosing the 30 cards, the deck is complete and can be used to play against

opponents. The deck might be suboptimal at this point and we might choose to refine it

at a later point after observing how it plays out in matches.

Focusing on how players at different skill levels describe building a deck, a pattern can

be observed:

1. The building of a deck starts with an idea, a seed, usually with either a theme or

known win-condition, a state of the world such that the game is won on the next

game turn.

2. The deck is played for a few rounds against other opponents. At this stage, subop-

timal card choices are identified (too slow/costly, too situational).

3. Using the insight gained by playing the deck, cards determined to be suboptimal

are replaced, go back to 2.

4. If we are satisfied with the success of the deck we stop optimising.

This process looks very similar to the high-level description of Evolutionary Algo-

rithms:

1. Generate the initial population of individuals randomly - the first generation

2. Evaluate the fitness of each individual in that population

3. Select, optionally crossover and optionally mutate individuals to create the next

generation.

4. Repeat on this generation until termination (time limit, sufficient fitness achieved,

etc.)

Therefore, the main approach considered to solve the deck building problem is via the

use of Genetic Algorithms and searching for possible solutions in a manner that would

emulate how players usually tackle this problem.
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The result of this project will be that a user can provide the program with a set of

decks and their frequencies to test against and the program should output an optimised

deck such that the expected likelihood of winning with this deck against an opponent of

comparable skill is more than 50 %.

The reason of choosing 50 % as the sufficient criterion is due to the fact that the com-

petitive ladder of the game can be modelled as a random walk, with the win probability

matching up with the probability of going up, the aim of the ladder being to climb up.

Work has already been done with regards to predicting what decks opponents are

playing from decisions at the start of the game as well as towards publicly available

simulating frameworks for the game logic and AI. This work can be used as a starting

point for this project in terms of how data could be handled and what data structures

can be useful to encode the state of the world.

Additionally, since players like sharing ideas of how to build decks, these are provided

on different game-specific websites, sometimes accompanied by a small description of the

logic behind the creation of the deck and in very rare occasions data in the format of

games won/lost against what class and at what rank. This information can be compiled

into a suitable format to be used by the solution. More specifically, this will allow the user

to input the state of the world in high-level, domain-specific terms rather than having to

describe all card choices.

Links to previous work or useful frameworks

Predicting Hearthstone opponent deck using machine learning

https://www.elie.net/blog/hearthstone/predicting-hearthstone-opponent-deck-using-

machine-learning

Simulator libraries and advanced rulebook

http://hearthsim.info/

Resources Required

I Overwolf SDK for the purpose of gathering data from the game, alternatively writing

a log parser for the game.

II Fireplace or equivalent simulator for the game for the purpose of testing and vali-

dating as well as for the learning process of the algorithm. (http://hearthsim.info/)

III Personal computers will be used for the purpose of this project:

A laptop used for primary work (Quad-core 3.5Ghz, 32GB RAM, (0.5 + 1)TB

storage space(SSD+HDD), Nvidia GTX-980M GPU with 8GB VRAM).

A tower used for offline computations (Hexa-core 3.8Ghz, 32GB RAM, 20TB storage

space(HDD), Nvidia GTX-770 with 2GB VRAM).

Work will be synchronised between the two machines via Dropbox and OneDrive.

Source code will be revision controlled via a private repository on GitHub.
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Starting Point

At the start of the project, a list of utilities that can be used for the purpose of simulation

or data gathering has been compiled and I have familiarised myself with the interface

employed by these.

The Artificial Intelligence I course provides a starting point for the algorithms that

may be considered when solving the proposed problem, however, additional reading will

have to be done as to adapt them to the specific use-case.

Domain specific knowledge from playing and watching tournaments and analysing

professional style of play is compiled for reference during the project.

An informal interview with a few professional players regarding ”How they build decks

for tournaments” as well as an analysis of similar questions from interviews conducted

by others (usually as part of a tournament broadcast) has been done to narrow down

possible algorithms for a solution.

Software and Interface Design and Software Engineering provide a basis for how the

work and code management and design might be done.

Substance and Structure of the Project

The aim of this project is to create a program capable of optimising a deck for the game

Hearthstone to be viable against a distribution of opponent decks.

As such, this problem appears to be a good candidate to be tackled via a Genetic

Algorithm. In particular:

1. Generate random initial decks.

2. Simulate games where an AI plays against the same type of AI, and:

One uses a deck from the ones provided as input and the other plays a candidate

(algorithm with a static landscape)

Or

Both play candidate decks (algorithm with a dynamic landscape).

The probability of winning as determined by simulating games is used as a fitness

function for the individual.

3. Create a fitness/usefulness function for cards and treat them as chromosomes, the

bag of chromosomes will represent the genotype.

4. Create offspring in one of two ways:

By cloning

Or

By performing crossover between the parents.

This step might result in a deck that does not respect the deck building rules, so

details about it will be discussed a bit further along.

5. Evaluate the fitness of the new offspring if a recombination happened.
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6. Iterate until sufficient fitness is achieved or a time limit is exceeded.

When performing crossover, it might be the case that we end up with 2+ legendary

cards or 3+ non-legendary cards. If that is the case, we replace the excess cards with

random ones chosen uniformly from the cards that are not used in the deck so far and are

valid for the considered class.

A different concern is that post-crossover the number of cards in a deck is not 30.

In this scenario, if we have less than 30, we choose random cards until we have enough.

If we have more than 30, then we start removing cards that have duplicates, least fit

first. If there are no duplicates, then we simply start removing the least fit cards until we

comply with the deck size requirement.

In the event that this approach does not yield the desired results and this cannot be

fixed by changing the crossover or mutation probabilities the first course of action will be

to change the crossover algorithm to work on card combinations rather than cards.

If the problem persists, a different approach to genetic algorithms will be considered.

This will consist of:

1. Create a notion of usefulness of combination of cards. This measure will be a

function of how effectively they counter card combinations played by the opponent.

2. Run simulation for the purpose of estimating the usefulness of different card com-

binations.

3. Build deck variations as a function of the card combinations we identify within the

decks against which we optimise.

Note that we will prioritise good choices against the more frequent decks.

4. Attempt to validate. If we fail, determine from the history of the game the least

useful combination and consider a deck variation where we replace it.

Success Criterion

To demonstrate, through well-chosen examples, that the project is capable of providing

a viable deck(choice of cards) when provided with a state of the world(meta-game snap-

shot), where viable means that the expected likelihood of winning against opponents of

comparable skill that are using a random deck is more than 50% with confidence more

than 99%.

Note that the harness used to validate the result will be almost identical to the one

used to evaluate the fitness of a candidate during the search for a solution. However, it

would be insufficient to have the search stop when it has statistically determined that the

fitness is above 50% as we might want to validate against fresh random decks that were

not necessarily used during the evolution process.

Extensions

If time allows, the following extensions can be considered and tackled:
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1. Extend the solution to be able to optimise the deck that is generated against a

target collection of decks, such that the expected win rate of the created deck is

more than 50% with confidence at least 99% when playing against an opponent of

comparable skill using a deck that is in the target collection.

2. Extend the crossover/deck merging algorithm to be able to handle generating a

valid deck from parent decks that are from different classes. Use this to remove the

requirement of choosing a class at the start of the iteration and as such allow the

change of class as part of the optimisation. This might require the implementation

of a notion equivalent to class fitness.

3. Create an interface for the game, that using the statistics and fitness results from the

simulations and data from a live game makes suggestions to the player for possible

improvements that can be made to their deck. The assumption here is that sufficient

simulations have already been run offline to know approximate fitnesses of cards in

a meta-game context (what opponents choose to play).

Timetable and Milestones

Weeks 1 and 2 (26 Oct 2015 – 8 Nov 2015)

Create a data store in a suitable format (JSON) for the cards that exist in Hearthstone.

Create a data-store of the most popular decks (this varies from month to month but is

never more than 10).

Start reading about Evolutionary Algorithms (An Introduction to Genetic Algorithms

by Melanie Mitchell), sketches and pseudo-code for how to apply them to this particular

problem, discussions with the supervisor to ensure a good choice of algorithm.

Milestones: A small implementation of a Genetic Algorithm searching for optimal

solutions to a solved problem (Iterated Prisoner’s Dilemma). The expected result will be

strategies that resemble Tit for Tat.

Weeks 3 and 4 (9 Nov 2015 – 22 Nov 2015)

Write a small program that interfaces with the game and can react to game events(cards

being played, player turn starting, etc.) and at the end of a match shows who much did

the observed opponent cards overlapped with the popular decks.

Milestones: A small program that interfaces with the game and can find within the

data-store of cards the ones being played by the opponent as well as find how much overlap

there is with the popular decks.

Weeks 5 to 7 (23 Nov 2015 – 13 Dec 2015)

Write code that will later be used as part of the fitness function, i.e. code to identify

cards that are effectively dead, situational cards that did not have their criteria met, or

cards that were useful and attribute them a meaningful score.
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Create a framework that can be used on live games so that the fitness function can be

validated before it is used without a GUI as part of the evolution process.

Create the data structure that will hold enough information about a deck for the

purpose of this project.

Milestones: A overlay/application that can track and identify good and bad cards

given a fitness function; a valid fitness function to be used later within this project.

Weeks 8 and 9 (14 Dec 2015 – 27 Dec 2015)

Implement a framework that can use a simulator for the game to play two AI against

each other with given decks. Create an interface that can read a deck data structure and

interpret it as a Hearthstone deck. Create an application that takes two decks as input

and provides back the history of a simulated game. Use the previously created fitness

function to determine the fitness of cards in a deck.

Milestones: Ability to simulate a game of Hearthstone and compute the fitness of the

cards from the history of the game.

Week 10 (28 Dec 2015 – 3 Jan 2016)

Winter holidays/break; will be used to catch up with any missed milestones if necessary.

Weeks 11 and 12 (4 Jan 2016 – 17 Jan 2016)

Implement the core algorithm that runs the framework from the previous milestone to

determine the fitness of decks. Implement the code for deck crossover.

Milestones: A non-optimised version of the algorithm with the ability to run game

simulations and crossover candidates until a termination criterion is met.

Weeks 13 and 14 (18 Jan 2016 – 31 Jan 2016)

Polish up the algorithm, run simulations to determine any parameters that have to be

set, such as the crossover or mutation probabilities, improve the crossover step, make the

simulations in parallel, generate population-wide statistics and aggregate them.

Write up a progress report for the project so far. Attempt to have statistical data

before the write up to provide some empirical results along with it.

Start writing the Preparation and Implementation sections, including any data gen-

erated so far that will be relevant for Evaluation.

Milestones: The algorithm should require less time at the cost of using more resources,

termination should be now within reasonable time, i.e. not required to be left to run

overnight, progress report.

Weeks 15 and 16 (1 Feb 2016 – 14 Feb 2016)

Run the algorithm in different modes (optimising against a target set and optimising

against other candidates). Create a validation framework that can test if the goal is met
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for both the core aim and the first extension, i.e. make sure the validation framework is

able to generate valid random decks.

Prepare a presentation of the project for my peers.

Finish writing the Preparation section and attempt to finish the Implementation sec-

tion (conditional on the validation framework being done as well).

Milestone: A framework that is able to demonstrate if the core aim is met and if the

first extension is met. A presentation of the project has been given. Finished Preparation

and Implementation.

Weeks 17 to 19 (15 Feb 2016 – 6 Mar 2016)

Run simulations for random seeds. Generate enough data for it to be statistically signifi-

cant. Compute metrics such as runtime until termination, win probability at termination,

the number of generations/cycles required. Aggregate the data and validate the algorithm,

amend and retest if necessary.

Write the Evaluation section, aggregate the simulation and validation data and statis-

tics into presentable formats.

Milestones: Solution is statistically proven to work, data provided with recreation

steps, dissertation effectively written.

Weeks 20 to 27 (7 Mar 2016 – 1 May 2016)

Easter break, time will be used to catch up on missed milestones. If amendments to the

parameters of the algorithm have been done, this time will be used to make sure enough

data is generated to ensure proper validation. Proof-reading of the dissertation alongside

peer proof-reading.

Week 28 (2 May 2016 – 8 May 2016)

Finish Dissertation, additional proof-reading, polish-up, add diagrams to better represent

the data alongside the raw data. (where possible; due to the size of the data, in some

cases only the graphical representation might be feasible)

Milestone: Hard-copies and electronic copies of the Dissertation are ready for submis-

sion,

Week 29 (8 May 2016 – 13 May 2016)

Milestone: Submission of Dissertation.
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