
Aide-mémoire: Improving a Project’s Collective Memory
via Pull Request–Issue Links

PROFIR-PETRU PÂRT, ACHI, Department of Computer Science, University College London, United Kingdom

DAVID R. WHITE, Department of Computer Science, University of Sheield, United Kingdom

EARL T. BARR, Department of Computer Science, University College London, United Kingdom

Links between pull-requests and the issues they address document and accelerate the development of a software project, but
are often omitted. We present a new tool, Aide-mémoire, to suggest such links when a developer submits a pull-request or
closes an issue, smoothly integrating into existing worklows. In contrast to previous state of the art approaches that repair
related commit histories, Aide-mémoire is designed for continuous, real-time and long-term use, employing Mondrian Forests
to adapt over a project’s lifetime and continuously improve traceability. Aide-mémoire is tailored for two speciic instances of
the general traceability problem Ð namely, commit to issue and pull-request (PR) to issue links, with a focus on the latter Ð
and exploits data inherent to these two problems to outperform tools for general purpose link recovery. Our approach is
online, language-agnostic, and scalable. We evaluate over a corpus of 213 projects and six programming languages, achieving
a mean average precision of 0.95. Adopting Aide-mémoire is both eicient and efective: a programmer need only evaluate a
single suggested link 94% of the time, and 16% of all discovered links were originally missed by developers.

CCS Concepts: · Software and its engineering → Requirements analysis; Software evolution; Software version control;
Maintaining software.

Additional Key Words and Phrases: Traceability, Link Inference, Missing Link

1 INTRODUCTION

Traceability is the maintenance of relationships between software development artefacts; the most important
of these relationships is the link between requirements and their implementation. In the łmove fast and break
thingsž era, the addition and maintenance of links are too often neglected. Good traceability practices and tooling
can improve all aspects of software development, from requirements elicitation to code maintenance. As such,
traceability is a seminal software engineering concern.

In modern development, issues track outstanding work, both reported bugs and feature requests. A Pull-Request
(PR) is a sequence of patches submitted for reviewing and merging into a project’s mainline, as illustrated in
Figure 1. Developers work with issues and PRs, day to day; they are interlinked in a developer’s mind. When
these traceability links are recorded, they accelerate software development because developers can use them to
restore context [28, 50]. They keep teams informed of progress on feature enhancement and prevent commit
reversion and issue reopening by connecting the commits within a PR with the issues they address [31, 49].
Developers use them to prioritise work; reviewers use them to learn the context of an issue. They facilitate fault
prediction [57], bug localisation [43, 58, 61], and issue triage.

Authors’ addresses: Proir-Petru Pârt,achi, Department of Computer Science, University College London, London, United Kingdom, proir-
petru.partachi.16@ucl.ac.uk; David R. White, Department of Computer Science, University of Sheield, Sheield, United Kingdom, d.r.white@
sheield.ac.uk; Earl T. Barr, Department of Computer Science, University College London, London, United Kingdom, e.barr@ucl.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for proit or commercial advantage and that copies bear this notice and the full citation on the irst page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior speciic permission and/or a fee. Request permissions from
permissions@acm.org.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
1049-331X/2022/6-ART $15.00
https://doi.org/10.1145/3542937

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1145/3542937

2 • Profir-Petru Pârt,achi, David R. White, and Earl T. Barr

Despite their importance, these links, like other traceability links, are often not recorded or maintained.
Although modern tools, like JIRA and GitHub, provide increased support for linking, developers do not record
most links [5]. We conirm this trend in a large-scale analysis of repositories: over half (54%) of PRs are not linked
to an issue when submitted, despite the fact that a third of project contribution guidelines recommend linking
(Section 7.1). During PR review, missing links are sometimes discovered manually and the PR amended. Around
16% of PRs are linked during this process, leaving 38% unlinked.

We present Aide-mémoire (A-m), a tool that suggests PR-issue links to a developer. We call it Aide-mémoire
because it aims to help a project partially retain its łcollective memoryž. A-m is online: it suggests a link when a
developer submits a PR or closes an issue. This is critical for uptake. Ofering suggestions to developers when
they need not context-switch is critical. In his ICSE 2020 Keynote, Peter O’Hearn remarked that an analysis
run as a batched process had 0% developer uptake, which jumped to 70% when the same suggestion is made
during code-review [37]. A-m does not require invasive instrumentation, but relies instead on the content that
developers already produce: commit logs, PRs, and posts on discussion boards. It needs only tokenise its inputs, so
it is language-agnostic and this, coupled with the fact that it builds its online classiication model incrementally,
allows it to scale to large code bases. To train A-m, we mine GitHub projects and their issue trackers. A hurdle all
tools that aim to improve developer worklows face is Agile’s łlightweightž requirement [34]: tool adoption and
use must quickly pay for itself. A-m’s principal goal is to meet this demanding requirement by making the cost of
creating and maintaining PR-Issue links easy and seamless. Time will tell how well AM meets this deployability
challenge (Section 3.2).
While leaving feature selection to neural architectures is common today, it incurs a higher training cost or

requires additional training data. In machine learning approaches other than deep learning, feature selection is a
critical step that can make or break a model. With the advent of neural networks in SE, a scan of recent papers
will reveal that feature selection has been neglected. We turn to feature selection to speed both A-m’s training
and, as it is online, its adaptation to new linking regimes. Section 4 carefully details this process and can serve as
a primer on feature selection for other software engineers who may ind it useful in their work.

When this was written, the state of the art commit-issue prediction tool was RCLinker [23]. RCLinker is oline
and handles commits, not pull-requests, and is limited to Java projects, since it requires ChangeScribe [24] to
generate natural language descriptions of changesets to Java code. To validate A-m against RCLinker, we therefore
had to adapt it (Section 6). We call our variant RCRep; to handle PRs, it replaces ChangeScribe summaries with
user-provided PR descriptions, the irst post in a PR, which is semi-structured by convention. RCRep suggests a
pull-request when its internal RCLinker predictor suggests any commit within that pull-request. Because oline
is a degenerate case of online, we run A-m oline to compare it with RCRep; we take care to ensure neither
tool sees events from the future. We show that A-m is more precise than RCRep, achieving a mean Precision of
0.76 and F1-Score of 0.46 compared to RCRep’s 0.14 and 0.15, with a similar Recall (0.37 vs 0.36) across 47 Java
projects (Section 6.2).
Having established A-m’s performance against a baseline, we evaluate it in its native setting: online over

a multi-lingual corpus of 213 projects, which contains a range of project sizes and programming languages
(Section 5.1). We train A-m on project history preixes of ixed length relative to project size and validate it on
the suix by replaying repository events. It achieves high accuracy: a Mean Average Precision (MAP) of 0.95
(Section 7.2). We also show that A-m generalises well: there is no statistically signiicant diference with project
size or across languages in performance. A-m maintains performance on projects with over a thousand open
issues and hundreds of monthly pull-requests; Section 7.2 shows that there is no statistical correlation between
any of the performance metrics and project size.

We designed and built A-m to seamlessly integrate with existing developer worklows; A-m must augment, not
disrupt them (Section 3.2). Therefore, A-m must be highly precise to avoid distracting developers with useless
suggestions they discard. Our inding that A-m achieves 0.95 MAP suggests that it meets this requirement.

ACM Trans. Softw. Eng. Methodol.

Aide-mémoire • 3

Fig. 1. Simplified pull-request process. Each small circle represents a commit. A developer opens a new branch, makes code
changes and submits a pull-request to code review. Further changes may be made on the branch before being accepted and
merged.

An oline approach, like RCLinker, must be periodically retrained, while an online model, like A-m, can learn
as the project evolves. Thus, A-m does not require a dedicated maintenance task, substantially enhancing its
deployability. Finally, installing A-m only requires a lightweight backend that can be installed locally or onto a
server for sharing, and a Chrome plugin.

Our main contributions follow:

• We present the design and implementation of A-m, a tool that solves the PR-issue link inference problem
via online classiication, providing pertinent suggestions;

• We evaluate A-m on a large and diverse corpus, and demonstrate that our approach generalises across
languages and scales to large projects containing over a thousand open issues and hundreds of PRs per
month;

• We show that A-m can exploit information in PRs to outperform related work that solves the traditional
oline commit-issue linking problem when applied to PRs.

All tools, data and scripts needed to reproduce our work are available at https://github.com/PPPI/a-m.

2 MOTIVATING EXAMPLE

Figure 1 overviews a typical modern development process: a PR consisting of a set of changes to resolve an issue
is submitted for code review. If the link between the PR and issue is not recorded, the issue remains open and the
record of why a PR was made is lost.
Literature suggests that certain features, such as textual overlap, participants, iles touched, or even time

between events, can be useful predictors of artefacts being related to each other [23, 36]. While some of these
features’ usefulness makes intuitive sense, before delving into the details of Aide-mémoire, we irst look at a
pseudo-anonymised example of a PR-issue pair from GitHub to assess how the features suggested by literature
could aid prediction.

Figure 2 gives an example of an unlinked PR and corresponding issue, where the issue was open but initially
missed by the PR submitter. The example is taken from the ng−table project, a table library for AngularJS. On
the left of the igure is a pull-request containing code changes that makes it possible for a developer to access
the original data of a table after it has been iltered or sorted; this PR addressed the issue in the right of the
igure, but was not linked at the time the PR was submitted. Both titles and conversations discuss iltering and
mention common terms such as the identiier fragment ‘getData’. This causes a high textual similarity between
the titles as can be seen in Figure 2a and Figure 2b. Moreover, there is signiicant textual similarity between the PR
description, the irst posting in Figure 2c, and the irst three postings in Figure 2d. The particular sub-tokens that
overlap are highlighted in the title and postings. The PR and issue also share a common participant: namely, the
PR submitter (identiier @a1cb63e0b7). The submitter only references the PR and closes the issue, 10 days after

ACM Trans. Softw. Eng. Methodol.

https://github.com/PPPI/a-m

4 • Profir-Petru Pârt,achi, David R. White, and Earl T. Barr

Title: feat($browser): Added events to provide the data after it is filtered…

Id: #937 State: Merged Author: a1cb63e0b7

Onto: esvit:main From: a1cb63e0b7:main Date: 24 Nov 2016

Participants: [@19ab84e738, @a1cb63e0b7, @b8505b3597]

(a) pull-request Metadata.

Title: Is there any solution to get the dataset after filter?

Id: #771 State: Closed Author: 16622c5bfb

Opened: 16 Dec 2015 Assignees: None Labels: None

Participants: [@16622c5bfb, @64f641086b, @a1cb63e0b7]

(b) Issue Metadata.

@19ab84e738 on 24 Nov 2016

Text: … and after it is sorted.

Added new events to the ngTableEventsChannel that fire when the

ngTableDefaultGetData filters and

sorts the data. This is usefull when you want to try to export only the

filtered data or when you

want to make some real time statistics over the data that is beeing

filtered Sha: 22ed10f

Commit: By: @19ab84e738 Sha: 22ed10f

Title: feat($browser): Added events to provide the data after it is

filtered…

@a1cb63e0b7 on 24 Nov 2016

Text: The travis build is failing on some e2e tests. Nothing to do with this

PR though!

Once I fix these (next few days hopefully), this PR will automatically get

published to npm...

@19ab84e738 on 24 Nov 2016

Text: Great, thanks �

By the way I think this resolves some issues like: issue #771, I should

have mentioned them maybe in the commit.

@a1cb63e0b7 referenced this pull request on 4 Dec 2016

State: Closed Id: #771

Title: Is there any solution to get the dataset after filter?

(c) pull-request Discussion.

@16622c5bfb on 16 Dec 2015

Text: once I click a 'filter' button, how can I get the total dataset?

@64f641086b on 16 Dec 2015

Text: tableSetting's $data parameter is the filtered data set.

@16622c5bfb on 16 Dec 2015

Text:

 self.tableParams.filter({ $: term });

 self.tableParams.reload();

 $scope.getArray = self.tableParams.data;

here, self.tableParams.data is only the 1 page data set, how can I get

the full data?

@64f641086b on 16 Dec 2015

Text: As far as I know, you cant because of the pagination function at the

end of getData.

You can create your own getData, that before cutting the array, just

saves the new array in a local location.

 @16622c5bfb on 18 Dec 2015

Text: My problem is that I don't know how to create my getData function

cause of newbie for Angularjs, can u (anyone else) plz help me? thanks in

advance.

(d) Issue Discussion (trimmed for typeseting rea-
sons.)

Fig. 2. Example of a pull-request and a related issue. The PR was not linked to the issue when submited, but the missing
link was subsequently added manually by the submiter ater 10 days. The title and discussion share common terminology as
well as common participants that can be exploited by Aide-mémoire. Some of the more useful ones are highlighted in red
along with the reference message that was created upon closing the issue. Developer names have been pseudo-anonymised.

the PR was submitted. By exploiting these and other features, Aide-mémoire assists developers by suggesting
links at PR submission and issue closure and can reduce such delays.

ACM Trans. Softw. Eng. Methodol.

Aide-mémoire • 5

Live Data

Repository and
Issue Trackers

Snapshots
Internal
Eval Set

Heuristic Linking
to form

Ground Truth

Filter to define
Domain of

Interest

Candidate
Selection

Tokenisation
Feature Vector
Construction

SuggestionsClassification

Sample by
Programming
Language etc.

Internal
Dev and Eval
Set Selection

Feature
Exploration

Features

Annotated
Snapshots

Internal
Dev Set

Features

1. Problem Definition and Feature Exploration

2. Model Training

3. Deployment

Tokenisation
Feature Vector
Construction

Classifier Training Trained ModelCandidate
Selection

New Links

User Feedback

Internal
Eval Set

Fig. 3. Methodology used for instantiating Aide-mémoire. In the first stage, a datastore of repositories is identified, filtered
and sampled to define the domain of interest. Heuristic linking generates an initial knowledge to learn and evaluate against.
A subset of selected repositories is used to identify powerful features. In Stage 2, the annotated repositories are used to learn
a predictive model based on the selected features. In Stage 3, live data from the repositories is used to generate feature
vectors and suggest candidate links to a developer using the trained model. Feature exploration is not required for the
implementation, in which case the Annotated Snapshots will be used directly in Stage 2 and all features will be considered.

3 AIDE-MÉMOIRE

Aide-mémoire is the irst online PR-issue linking tool. Figure 3 overviews the methodology and design of Aide-
mémoire. We start by obtaining a list of observed links already recorded within the project issue tracker. We
then determine the feature space for A-m, which we detail in Section 4. This process is performed once for our
evaluation, but may be performed on a per-project basis when deployed. Next, we use the features to learn
a model over a set of repository snapshots. We subsequently deploy the learnt model to suggest links when
developers submit PRs or close issues.

In solving an online linking problem, we must narrow the set of candidate links we consider to ensure that our
system remains responsive. When suggesting issues at PR submission we limit ourselves to open issues; one of the
main motivations for linking PRs and issues is to ensure the automatic closure of an issue if a PR is merged. For
the symmetric problem of suggesting PRs to be linked to a given issue, we use a seven-day window of recently
submitted PRs, in line with previous work [36].

3.1 Model Learning

We train a statistical classiier on PR-issue pairs to learn a probability distribution over possible links. For each
candidate PR-issue link, we calculate the feature vector as detailed in Section 4 and train the classiier to learn

ACM Trans. Softw. Eng. Methodol.

6 • Profir-Petru Pârt,achi, David R. White, and Earl T. Barr

the probability that the link should exist. In prediction mode, we sort links by this probability when presenting
suggestions to a developer. As most candidate pairs represent false links, our data is class-imbalanced; however,
we observe empirically on our development set that Mondrian Forests perform well despite this imbalance and
hence we do not employ undersampling.
We deviate from the more classical Random Forest used by the state-of-the-art oline tool [23], and instead

employ the online method of Mondrian Forests [22]. Mondrian Forests represent a class of Random Forests that
employ the Mondrian Process to partition the feature space. This process can be interpreted as a stochastic
kd-tree. We hypothesise that their resilience to class imbalance arises from their ability to infer tight bounding
boxes around positive examples; further investigation which lies outside the scope of this paper is needed to
validate this claim.

Mondrian Forests work well in the online case; training them with sequential examples is equivalent to batch
training in the limit [22]. Table 9 in Section 7.5 shows that simply retraining a Random Forest periodically is
insuicient in our setting. We speculate that the kd-tree/bounding box nature of Mondrian Forests are a better
prior in our setting enabling it to work even on more data-starved projects. Additionally, since probability
estimates are obtained by majority voting, this enables us to use the model to obtain iner-grained probability
estimates. Once initially trained, we deploy the classiier to provide suggestions to the developers and learn
online as further links are created.
We add special ‘no_pr’ and ‘no_issue’ entities that represent the absence of any link, with their structures

populated with empty strings and null timestamps. These special cases allow us to explicitly learn when no link
should be proposed. We truncate suggestion lists at the index of these special entities, using them as a ‘tidemark’,
excluding predictions that are less likely than a link to an empty issue/pr. Learning when these entities apply
relies on our use of features that depend on only one side of the link.

Explicitly recording the absence of a link requires the learner to solve two problems at the same time: ‘should
there be any link?’ and ‘what should the artefact be linked to?’. Previous work only focused on the latter,
suggesting no link only when no suggestion could be made above some threshold, which itself was learnt
post-hoc. Our solution allows the model to learn a per-suggestion threshold, providing a natural cut-of point
when prompting a developer with a list of suggested links.

3.2 Deployment

We built A-m to vault Agile’s lightweight requirement [34] and with deployability in mind from the get go. A-m’s
use requires only installing a browser plugin and a backend server. Training requires only the URL of a GitHub
repository. A-m can search for links to suggest in parallel to other development tasks, so it seamlessly integrates
into existing worklows.
A-m’s back-end learns, maintains, and stores the project’s model; its Chrome plug-in front-end parses issue

and PR pages. Although a developer team would beneit from sharing A-m’s backend, individual developers
can install both the server and the plugin locally. Developers interact with Aide-mémoire via its plug-in when
viewing a PR or issue. The plugin suggests links when a developer closes an issue or submits or reviews a PR.
A-m only makes high conidence suggestions (controlled by a user-speciied threshold) and displays them in rank
order. A-m makes no suggestions that are less likely than the special ‘no_pr’ and ‘no_issue’ entities, staying silent
when its conidence is low.

To learn a model for their project, a developer can install A-m and generate a model locally. To start training, a
developer need only enter their GitHub URL intoA-m’s command line. This instigates the crawling and processing
of their repository. Alternatively, project managers can install a central backend. The initial training of our
system over a large project such as Google’s Guava, which contained 206 PRs and 2563 issues, and a total of 5392
commits when we crawled it, takes less than two hours on an Intel i7-6820HK@2.70 GHz.

ACM Trans. Softw. Eng. Methodol.

Aide-mémoire • 7

Our prototype plug-in subsequently makes suggestions to a developer in, on average, less than 10s of the
completion of their PR or issue closing message. The suggestion itself is fast (sub-second); most of the delay
is parsing the issue or PR GitHub page and sending the extracted data to the backend. The expensive HTML
wrangling and network roundtrip can be overlapped with, and hidden beyond, a developer’s other activities. For
instance, a developer need only click on the plug-in to start the process. While it’s running in the background,
they can continue work on their PR submission or issue triaging. Future engineering work could further mask
this cost behind continuous integration, by including it as an additional pass in the build ile.

To adaptA-m to platforms other than GitHub, one need only change the class that interacts with the GitHub API
with one that interacts via the desired platform API. For example, to apply to JIRA, the GitHub API methods [39]1

should be changed to the equivalent JIRA ones [18] in our tool source-code. Afterwards, as the data is converted
into a common format, the tool will work as is.
Although deployability is a key design goal of A-m, it has not yet been put to the test. Tackling an industrial

problem like PR-Issue linking presents a researcher with a chicken and egg problem: either irst they convince an
industrial partner to risk working their unproven solution with them, or they irst realise their solution, then try
to convince an industrial partner to try, and hopefully adopt, it. We chose the latter. This paper and its associated
GitHub repository are this work’s irst chance to reach practitioners.
Full source code, deployment tools, and code and scripts required to recreate our evaluation can be found

online [39].

4 EXPLORING THE FEATURE SPACE OF ISSUE-PR LINKS

In this, the neural era, exacerbated by the recent advent of large language models such as GPT-3 [7], feature
exploration is unfashionable; the networks are left to sort out features on their own at the cost of training time
and data. Most projects are small and all start small, and usually lack suicient labelled data to train a neural
network. Our focus on feature engineering is in the spirit of focusing on good data rather than big data [51].
A-m is not neural because we wanted it to apply to small projects. So, we now describe the traditional feature
engineering [21] that underlies A-m. Despite being, or perhaps because it is, out of fashion, software engineering
researchers who use ML may ind this section useful as a primer. Even neural networks beneit when feature
engineering helps architect the network, narrows wide data to the width of a network’s input layer, or boosts
signal, and hence reduces the amount of training data and training time needed. We irst enumerate features
drawn from the literature and augment with new features we devised. This collection is comprehensive to the
best of our knowledge. Using the full feature set is costly, both in development time and, crucially, when deployed.
So, in closing, we show how we reduced our features while retaining synergistic interactions and maintaining
A-m’s performance by employing Recursive Feature Elimination [21, 47].

4.1 Feature Space Construction

To classify Issues and PRs, we use textual similarity measures. After deining the measures we use, we detail how
we construct the full feature space to capture the structure of issues and PRs.

Similarity Measures: In order to compare the subject of an issue and a PR, accompanying text documents
such as commit messages, source code changes, and conversations are transformed into a vector representation
using tf-idf, a discriminative model operating at the ine-grained level of term frequencies. We preprocess all
documents to: remove punctuation, split tokens using whitespace and code conventions (as well as retaining
unsplit tokens in the case of identiiers), stem [41], remove stopwords, and exclude single-character tokens.

We also use tf-idf to measure document similarity. Among oline approaches, it is state of the art [4, 23, 60] and
one can naturally extend it to the open-world setting by dynamically maintaining an idf estimate. We transform

1https://github.com/PPPI/a-m/blob/master/Util/github_api_methods.py

ACM Trans. Softw. Eng. Methodol.

https://github.com/PPPI/a-m/blob/master/Util/github_api_methods.py

8 • Profir-Petru Pârt,achi, David R. White, and Earl T. Barr

documents in our corpus� into term vectors to enable comparison. The value for each term � is its term frequency
tf, the number of times it occurs in a given document � , weighted by its inverse relative frequency in the corpus:

tf-idf(�, �) = tf(�, �) log2

(|� |

|{� ′ | � ∈ � ′ ∈ �}|

)

. (1)

We replace terms that are either too rare (occur a single time in our corpus) or are too frequent (present in
more than 95% of the documents in the corpus) with the unknown, or out-of-vocabulary, token. We make the
non-standard choice for tf-idf parameters to ensure a larger vocabulary for small projects as standard practice
would induce too many unknown tokens. We choose to eliminate only those terms that occur a single time to
maintain a diverse vocabulary. We use the tf-idf implementation from gensim [45], which was designed to handle
large corpora eiciently.

We then use this representation to compute cosine similarity:

�� (� � , ��) =
� ���

|� � | |�� |
, (2)

where � may take values from {‘title’, ‘description’} and � from {‘title’, ‘report’, ‘comment’1, . . . , ‘comment’�}.
Only CSfull-context makes use of all pairs, the other cosine similarity features restrict � and � as shown in Table 1.

We represent documents as a bag-of-words:

bow(�) = {(�, tf(�, �)) | � ∈ �}. (3)

As is conventional in the traceability literature, we apply Jaccard and Dice similarity to this representation. Both
measures account for multiplicity when computing intersections and unions of bag-of-words representations.

� (� � , ��) =
|bow(� �) ∩ bow(��) |

|bow(� �) ∪ bow(��) |
(4)

Dice(� � , ��) =
|bow(� �) ∩ bow(��) |

min(|bow(� �) |, |bow(��) |)
, (5)

where � ∈ {′title′, ′description′} and � ∈ {′title′, ′report′, ′comment′1, . . . ,
′comment′�}. Only Jaccardfull-context

and Dicefull-context make use of all pairs; the other similarity features restrict � and � as shown in Table 1.
The Feature Space: Developers construct issues and PRs over time. As Figure 2 shows, PRs and issues can,

and often do, overlap in their topics and even their text. Previous work on retrospectively repairing commit-issue

links in an oline context exploited similar overlap [23, 36, 52, 60]. We build a feature space by considering
features employed by the previous state-of-the-art tool [23], which was created from irst principles and adapted
to the PR context. Along with Jaccard and Dice, we apply cosine similarity to all PR or Issue ields, and the
‘title-title’, ‘title-report’, ‘description-title‘, and ‘decription-report’ subsets of the PR-Issue pair. We also consider
seven new features Ð ‘lack of description’, ‘size of branch’, ‘number of iles touched’, ‘report size’, ‘participants’,
‘reopens’, and ‘existing link’ from Table 1Ð that allow the model to learn the new special entities (‘no_pr’ and
‘no_issue’) we employ (Section 3.1). A link to either of these new entities is equivalent to identifying PRs or issues
that should be classiied as unlinked. To capture their properties and interrelations, we consider four groups of
features: textual, social, temporal, and structural.
Textual Features: These features compare issue and PR artefacts with iles modiied by changes in a PR.

They assume that related issues and PRs share common terms. Previous, oline work [23] relied on commit
summarisation tools such as ChangeScribe [24], limiting applicability to programming languages supported
by the summariser. We exploit a PR’s title and description, to avoid reliance on code summarisation tools. We
compute these features by converting artefacts to tf-idf vectors and computing the described similarity measures.

ACM Trans. Softw. Eng. Methodol.

Aide-mémoire • 9

Table 1. Features constructed from a document vector representation and metadata. � is a PR object, � is an Issue object, � is
a traceability link, and �0 projects the first component of a traceability link. CS denotes cosine similarity and M denotes
metadata-based features. A direct reference to an object indicates the concatenation of all text from its constituent parts. We
propose the bolded features; the rest are due to Le et al. [23].

Feature Description

CSfull-content cs(p, i)
CStitle-title cs(p.title,i.title)

CStitle-report cs(p.title,i.report)

CSdescription-title cs(p.description,i.title)

CSdescription-report cs(p.description,i.report)

Jaccardfull-content js(p, i)
Jaccardtitle-title js(p.title,i.title)

Jaccardtitle-report js(p.title,i.report)

Jaccarddescription-title js(p.description,i.title)

Jaccarddescription-report js(p.description,i.report)

Dicefull-content ds(p, i)

Dicetitle-title ds(p.title,i.title)

Dicetitle-report ds(p.title,i.report)

Dicedescription-title ds(p.description,i.title)

Dicedescription-report ds(p.description,i.report)

iles |{ilename|ilename ∈ p, ilename ∈ i}|
�reporter 1 if the p.submitter = i.reporter, else 0
�assignee 1 if the p.submitter = i.assignee, else 0
�comments 1 if the p.submitter ∈ i.replies, else 0
�top 2 1 if the p.submitter ∈ i.top-2, else 0

�engagement
| {� |�∈issue.replies, c.author=p.submitter} |

|issue.replies |

Lag min({abs(p.timestamp−� .timestamp) |�∈i.events})
developer-ingerprint(p.submitter)

Lag-open p.timestamp − issue.open.timestamp
Lag-close issue.close.timestamp − p.timestamp
Lack of description 1 if the p has no description, else 0

Size of branch |p.commits|

Number of iles touched |{ile.name|ile ∈p.dif}|

Report size len(i)

Participants |{c.author | c ∈ issue.replies|}

Reopens |{t | t ∈ i.transitions · t.to = open}|

Existing Link 1 if ∃e ∈ E · �0 (e) = i, else 0

Social Features: We construct these features from reporters, assignees, and discussion participants. We
assume that the developers who solve an issue are likely to discuss it with the reporter, or, under contribution
guidelines that require having an issue open to which a PR refers, is both the reporter and the PR author. These
features, as seen in Table 1, are almost all binary.�engagement is the only exception: it measures the proportion of
comments that are made by the submitter of a PR and captures the intuition that a more engaged discussion
participant is more likely to contribute via a PR.

ACM Trans. Softw. Eng. Methodol.

10 • Profir-Petru Pârt,achi, David R. White, and Earl T. Barr

Temporal Features: These features capture properties of issue state transitions Ð e.g. from ‘open’ to ‘closed’
or ‘won’t-ix’ etc.We assume transitions, such as closures or reopenings are related to developer activities and
thus may correlate with PR events. Starting from Le et al.’s [23] temporal features, we adapt them to the PR setting
by using the PR ields equivalent to the commit ields used by Le et al. Additionally, we model the behaviour of
individual developers in terms of the expected time between their most recent interaction with an open issue and
their submission of a PR to address that issue. We calculate the mean and variance of a developer’s past behaviour,
and normalise the elapsed time in terms of standard deviations from that mean. This allows the model to use a
notion of expected time until interaction as a feature that is scale normalised, to allow individual variation in
development time.

Structural Features: These features capture properties relating to the structure of either an issue or PR. They
capture signal that aids classifying them as either linkable or not. For a PR, the irst feature considered, presence
of a description, checks that the PR provides non-trivial information. The next two proxy PR size in order to
learn what constitutes an unfocused (too large) or trivial (too small) PR. For issues, we consider four features:
The size of the report, the number of participants, how many times the issue was reopened and if it is already
linked to a PR. We assume that issues with higher engagement are more likely to be eventually linked to a PR.
Issues that are reopened tend to have multiple links to PRs, unless PRs are later merged. Finally, repositories tend
to prefer to merge issues and PRs with other issues and PRs rather than add multiple links. Hence, we consider
the presence of a link to be a signal that additional links are unlikely.
To validate including these features, we considered four conigurations: using only Le et al.’s features [23],

including only PR-related structural features, only issue-related structural features, and including features related
to both. When we add PR-speciic features or both PR and Issue speciic features, we found, over our development
dataset, an improvement in average precision Ð from 73% (on a data set that did not diferentiate PRs and issues)
to 87% (issue) and 93% (PR) Ð at little cost to recall since all conigurations report around 9% recall. While this
diference is not statistically signiicant on our dev-set according to a Mann-Whitney U test, we still included
them as suiciently informative.

4.2 Feature Selection

When selecting features, just using the top � features by importance is tempting. Doing so can, however, miss
synergies, redundancies, or antagonistic relationships between features. In our case, using the top � by importance
indeed misses redundancies in textual features. We show how we apply the principled approach, Recursive
Feature Elimination [47], to enrich A-m’s feature set. Feature selection allows us to adapt to a project by selecting
existing features. This can eliminate features that confuse the classiier. It does not, however, discover new
features. Feature selection’s main beneit is that it requires relatively little data and its cost is proportional to the
classiier training time. Given suicient data, an interested developer or researcher could replace A-m’s vectors
(over a ixed feature set) with an appropriate embedding procedure, such as a pre-trained neural network. We
leave this exploration to future work.
To formally analyse the eicacy of matching on text artefacts and other features, we employ a small but

representative internal development set of projects separate from our training and testing data. This internal dev
set is constructed by bucketing the projects by size into four equal groups and uniformly at random picking a
project from each bucket. We analyse the features listed in Table 1. To reduce the number of features, we irst
consider the linear correlation of the features on our development set. We hierarchically cluster the features
using Pearson �2. We want to preserve our prior that textual features, meta features, social features should be
good linear predictors of each other, while being less eicient at predicting across feature type, such as textual
features used as a predictor for social features. We manually examine various clusterings over our internal dev
set and select �2 ≥ 0.6 as our threshold because it maximally aligns with our intuition. Within these groups, we

ACM Trans. Softw. Eng. Methodol.

Aide-mémoire • 11
Im

p
o
rt

a
n
ce

C
S

ti
tl

e
-r

e
p

o
rt

D
ic

e
d
e
sc

ri
p
ti
o
n
-r

e
p
o
rt

Ja
cc

a
rd

d
e
sc

ri
p
ti
o
n
-t

it
le

Ja
cc

a
rd

ti
tl
e
-r

e
p
o
rt

R
e
p

o
rt

 S
iz

e

L
a
g

F
il
e
s

T
o
u

ch
e
d

C
S

ti
tl
e
-t

it
le

Ja
cc

a
rd

ti
tl
e
-t

it
le

Is
 li
n
ke

d

D
ic

e
d
e
sc

ri
p
ti
o
n
-t

it
le

M
re

p
o
rt

e
r

Ja
cc

a
rd

C
S

d
e
sc

ri
p
ti
o
n
-t

it
le

La
g
-o

p
en

Ja
cc

a
rd

d
e
sc

ri
p
ti
o
n
-r

e
p
o
rt

B
ra

n
ch

 S
iz

e

D
ic

e
ti
tl
e
-t

it
le

F
ile

s

N
o
 d

e
sc

ri
p
ti
o
n

C
S

d
e
sc

ri
p
ti
o
n
-r

e
p
o
rt

R
eo

p
en

in
g
s

D
ic

e
ti
tl
e
-r

e
p
o
rt

La
g
-c

lo
se

M
a
ss

ig
n
e
e

D
ic

e

P
a
rt

ic
ip

a
n
ts

M
e
n
g
a
g
e
m

e
n
t

C
S

M
co

m
m

e
n
ts

M
to

p

2

0.4

0.3

0.2

0.1

0.0

F

eature

Fig. 4. Feature Importance as computed using a Random Forests Classifier on the development set. We performed recursive
feature elimination to select the final feature set while considering synergistic and antagonistic interactions between the
features. The final set of features can be seen in bold. We do not show outlier values for presentation reasons.

only employ the features with the highest importance according to a Random Forest model. While such feature
pruning ignores higher-order feature interactions, we remark that many features we expect to correlate with each
other are also direct substitutes for each other (such as similarity measures). Because they are direct substitutes
and, ultimately, proxies for mapping the Issue-PR vector space, we decided that only working with irst-order
interactions is suicient. As sanity check, we also perform recursive feature elimination, as described below,
using all features. Using the resulting features, A-m’s performance does not vary in a statistically signiicant way.

On this pre-pruned feature set, we then perform recursive feature elimination to further reduce the considered
set. The core idea of recursive feature elimination is to ablate features one-by-one as long as the observed
performance does not signiicantly degrade. Figure 4 shows feature importance over the full feature set presented
in Table 1. It suggests that Jaccard should be included in the inal set of features. However, recursive feature
elimination determines that removing it does not impact model performance since Jaccard and CStitle-title are
linearly correlated, although below our previous �2 threshold, and the latter has a higher importance. Thus, we
reduce the number of features we use for evaluation to CStitle-report, Lag, Report Size, Number of iles touched, and
Branch Size (bolded in Figure 4). A consequence of modelling negative links explicitly is increased importance
of features that depend on the size of the artefacts; this is unsurprising as they represent good proxies for
determining unlinkable pull-requests and issues.
In all scenarios, we estimate importance using the standard Random Forest implementation provided by

SciPy [19]. When training and validating our system, we only consider pull-requests and issues whose last
update is within a certain window of relevancy, which we set to seven days as per the recommendation in
Wu et al. [60], to limit the number of candidate links considered both for feature selection and model training.
For Random Forest hyperparameters, we use Decision Trees and 100 estimators, in line with the recommendation

ACM Trans. Softw. Eng. Methodol.

12 • Profir-Petru Pârt,achi, David R. White, and Earl T. Barr

Table 2. Summary Statistics for a uniformly sampled subset of the Java Generalisation Corpus, ordered by the number of
existing links in the corpus. A range of projects sizes is included. In the majority of projects, most PRs are not linked to an
issue; this can be seen in the last column, the median linking rate being only 0.46 (0.43 for the sample)

Repository Links PRs Commits Issues Links/PR

pinterest/teletraan 11 403 774 41 0.03
mikepenz/MaterialDrawer 18 136 1982 1804 0.13
google/android-classyshark 21 92 597 63 0.23
roughike/BottomBar 44 123 789 687 0.36
facebook/fresco 65 241 1839 1567 0.27
googlei18n/libphonenumber 87 583 1476 1255 0.15
square/leakcanary 124 210 376 580 0.59
square/retroit 275 771 1562 1623 0.36
ampproject/amphtml 3061 6123 6872 4170 0.5
Sample Total 3706 8682 16267 11790 0.43

Corpus Total 19785 43101 174456 67720 0.46

from Oshiro et al. [30], leaving other settings to SciPy [19] defaults. We evaluate the features over all (�, �) pairs
for each repository; Figure 4 shows the results.

5 EXPERIMENTAL SET-UP FOR EVALUATING AIDE-MÉMOIRE

Evaluating A-m required substantial logistical efort, which we now describe. We irst present our two corpora,
a Java corpus, which enables comparison with RCLinker, the previous state of the art, and a multilingual one,
on which A-m can spread its wings. We explain how we weakly label these corpora to obtain training data. We
introduce performance measures for predicting lists and our adaptation of accuracy to account for our new
‘no_pr’ and ‘no_issue’ predictions.

5.1 A Tale of Two Corpora: Java and Multilingual

We use two corpora in this work. Table 2 presents the detailed statistics for a subsample of our Java corpus, as
well as aggregate statistics across all 47 repositories it contains. We use it to compare A-m with RCLinker, the
previous state of the art. Table 3 presents detailed statistics for a subsample of our multilingual corpus, as well as
its aggregate statistics. The multilingual corpus comprises 213 repositories and six programming languages. We
use it to evaluate A-m in detail in its native setting. Our multilingual corpus contains the Java corpus as a subset.
The SQL queries used to select projects are available online [39].

The repositories contained in our new corpora are sampled from the GitHub GHTorrent dataset [14], which
at the time of our sample contained a total of 3704251 repositories. We exclude projects that have fewer than
100 lines of code across all iles, ensuring that there is suicient code in the repository, such that per project
vocabularies contain at least 100 terms. We sort by the number of ‘watchers’ as a proxy for popularity, and select
the 50 most popular repositories, a igure limited by the time required to mine relevant data. The popularity bias
reduces the inclusion of low quality GitHub projects and increases the number of projects with high issue and PR
activity. We exclude projects using natural languages other than English, as we use the Porter Stemmer built for
the English language.

The languages for the multilingual corpus were selected irst by uniformly sampling ive languages from the
most popular 15 as reported by GitHub [11]. We applied these two restrictions to constrain the cost of mining the
corpus. We selected Scala, TypeScript, C++, C#, and JavaScript. We again exclude small projects and select the 50

ACM Trans. Softw. Eng. Methodol.

Aide-mémoire • 13

Table 3. Summary Statistics for a uniformly sampled subset of the Non-Java Generalisation Corpus, ordered by the number
of existing links in the corpus. A range of projects sizes is included. In the majority of projects, most PRs are not linked to an
issue; this can be seen in the last column, the median linking rate being only 0.49 (0.39 for the sample)

Repository Links PRs Commits Issues Links/PR

SaschaWillems/Vulkan 18 117 1176 246 0.15
OptiKey/OptiKey 53 147 2170 186 0.36
aseprite/aseprite 53 119 5745 1423 0.45
coryhouse/react-slingshot 75 175 600 277 0.43
akveo/ng2-admin 183 558 1144 669 0.33
angular/zone.js 222 403 633 451 0.55
facebook/draft-js 273 457 679 859 0.6
kadirahq/react-storybook 300 607 4694 964 0.49
hakimel/reveal.js 302 617 2095 1335 0.49
citra-emu/citra 468 1771 4972 1071 0.26
Sample Total 1947 4971 23908 7481 0.39

Corpus Total 97637 200414 763002 323667 0.49

most popular projects for each language. Omitting those we could not successfully crawl from GitHub due to
rate limits, we extracted 238 repositories. After additional removing repositories that have too few examples for
the results to be meaningful, the inal corpus size is 213.

5.2 Weak Labelling

Weak labelling enables the use of large corpora for supervised learning when manual annotation would be
prohibitively expensive. While weakly labelled data can be noisy, one need only take care to use it in conjunction
with machine learning techniques that can cope with noise. Mondrian Forests are one such technique, as we
observe in Section 7.2.
As a weak labeller, we heuristically link PRs to issues when a PR-issue pair is explicitly linked in the

GitHub metadata or when they both contain a SHA. We identify SHAs as r '[0−9a−f]\{5,40\}' or numeri-
cal (r '[\ n\r \ s]\#[0−9]+') tokens that can be disambiguated to a unique artefact in the project. We apply this
heuristic to PRs, issues, commit messages, and difs for each project in our corpora. We assume that unlinked
PR-issue pairs are negative examples, and linked pairs represent positive examples.
Because our corpora are not manually annotated, some negative examples are false negatives, links missed

by developers, and some positive examples are false positives. To mitigate this threat, we manually assessed
30 positive links and 30 negative links sampled uniformly from our corpus. On an initial sample, we found
signiicantly many false links to the issue/pull-request with the ID ‘#1’. We removed these links and, after
resampling and re-assessment, found more than 80% of the iltered links recovered by the heuristic to be correct.
This is suicient for A-m, because A-m, by virtue of its use of Mondrian forests, is robust to noise, as our results
show in Section 7.4. Crucially, the improvement is larger than the noise in our ground truth labelling: 62% > 20%
for precision and 31% > 20% for F1-score (Table 7). The demonstrates suicient signal to be conident in this
result [59].
To further validate the ground truth data we use, we have inspected 100 links (20 links per project) across

our development set. We have found that the heuristics employed have a 78% precision with a range of 55ś95%.
Two authors have performed the annotation and the Cohen’s kappa agreement is 0.643 indicating substantial
agreement. A single project is below 80% precision at 55%, which is Facebook/react-native. This is due the project

ACM Trans. Softw. Eng. Methodol.

14 • Profir-Petru Pârt,achi, David R. White, and Earl T. Barr

being splintered into multiple GitHub projects each with a separate issue tracker; however, with substantial
cross-project referencing. This is not a practice we generally observed among other Open Source Software
projects, and hence do not consider it a threat to our data gathering methodology. We have, however, excluded
72 projects from our corpus after heuristic linking, because they have fewer than 25 recorded links, which would
lead to a performance metric computed over at most 5 queries due to our 80%/20% train/test split.
These two heuristically-linked corpora are much larger than those previously used; we have made them

available to other researchers [40].

5.3 Measuring Performance

Suggesting traceability links to a developer naturally requires producing suggestion lists. Measuring A-m’s
performance needs performance metrics for lists. We irst present Mean Average Precision, a standard metric
from Information Retrieval for list prediction tasks. We designed A-m to choose its suggestions with care, to
avoid burdening developers with low quality suggestions. To measure how well we succeeded, we introduce hit
rate (HR), which counts how often A-m makes a suggestion when it should and how often A-m remains silent
when it should.

Mean Average Precision. A-m presents a ranked list of suggestions to a developer containing PRs to be linked
(when closing an issue) or else issues to be linked (when submitting a PR). To quantify performance, we useMean

Average Precision. We describe a single request for a suggestion list as a query �, where � is the set of all such
queries to A-m from the training data. The list produced in response to an individual query � is �� ; its length is
|�� |. For � ∈ � , rel� (�) is an indicator function that returns 1 if the � th item in the response list �� is relevant
and 0 otherwise, including for � values s.t. � > |�� |. � (�) is the precision of the irst � items returned for a given
query: number of correct over � .
In order to consider both the precision of individual suggestions, and, crucially, their positions within the

suggestion list, we use Average Precision (AP):

AP (�) =

∑�=∞
�=1 �� (�)rel� (�)

�

�{� | � ∈ N ∧ rel� (�) = 1}
�

�

. (6)

Average Precision is the average of all precision values at each recall value a query � may take as you increase
the length of the output list. To measure the quality of suggestions across all queries in � , we use Mean Average
Precision [29]; it measures the quality of a set of ranked lists of suggestions.

Deinition 5.1. Mean Average Precision (MAP)

1

|� |

︁

�∈�

AP (�). (7)

We treat each PR submission or Issue closure event as an individual query � and measure the quality of our
suggestions per project. This considers the order in which suggestions are ofered, and amortizes outliers such as
PRs that either have a high number of links or has missing ields. In other words, MAPmeasures the preponderance
of true links in the responses ofered by A-m during the replay of repository events in the event suix (Section 6.2).

Hit Rate. Our task demands a few high-quality suggestions or no suggestions at all, rather than many low-
quality suggestions because suggesting irrelevant links wastes a developer’s time. For this reason, A-m truncates
its suggestions at ‘no_issue’ or ‘no_pr’. MAP cannot be applied to scenarios with no relevant documents. Indeed,
it does not apply to empty lists, because AP (�) is undeined for |�� | = 0. A-m’s truncation tactic makes this case

ACM Trans. Softw. Eng. Methodol.

Aide-mémoire • 15

occur fairly often. The set of queries where MAP does not apply is

� ′
= {� | ∀� ∈ N · ���� (�) = 0}; (8)

that is, the set of all queries for which there are no relevant artefacts to predict. To overcome this limitation,
using the above set, we introduce List Hit Rate:

Deinition 5.2. List Hit Rate

1

|� |

(
︁

�∈�−� ′

AP (�) > 0 +
︁

�∈� ′

|�� | = 0
)

. (9)

Hit rate (HR) proxies impact on developer worklow. HR measures not only when A-m correctly predicts a link,
but also when it correctly does not. HR penalizes A-m for predicting links when there are none and AP (�) is
undeined. HR lifts the notion of accuracy from binary classiication to lists. The fact that we predict the absence
of links inverts the usual logic. A false positive occurs when A-m returns one or more suggestions when no
suggestion should be made, while a false negative is when A-m returns an empty list when at least one link exists
in the data. Conversely, a true positive is when at least one correct suggestion is made one at least a suggestion
should be made, and a true negative is when A-m outputs an empty list when no suggestions are to be made.
To obtain Precision, Recall and F1 scores for A-m’s output, we truncate all lists to length � or the rank of

the no_{issue/pr} entity, whichever occurs irst, then we concatenate all predictions together, before computing
precision � , recall � and F1-score (f1):

� =

tp

tp + fp
, (10) � =

tp

tp + fn
, (11) f1 =

2��

� + �
. (12)

5.4 The Longitudinal Evaluation of Aide-mémoire

A-m is the irst commit-issue (where we extract commit-issue links from A-m’s PR-issue links) predictor that aims
to suggest links to a working developer as they submit commits or issues; previous work bulk proposes commit-
issue links in project histories. It solves an inherently online problem, which restricts any online predictor’s
training data. This rules out cross-fold validation, which sufers from data leakage: a predictor might incorrectly
train on links from the future relative to the time of a given suggestion.

To present data leakage, we train A-m with longitudinal evaluation [16]. We irst latten each repository into a
chronological sequence of events; we consider ‘PR index’, the position of a PR in the chronological sequence of
all project PRs, as a proxy for elapsed development time. We then split each project into a preix and suix to
obtain a 80%/20% training/test split over the PR indices. We replay the suix of this event stream, simulating
the creation of artefacts such as issues and PRs, and request link predictions from each trained classiier at the
time of PR submission or issue closure. In the case of A-m, to simulate developer feedback, if the classiier has a
correct prediction in top ive, it uses those predictions to update itself. The tf-idf model is continually updated.
A-m maps new tokens to a special unknown token. We restrict our evaluation to leave-one-out (1-fold) due to the
computational cost of simulating all repository events for large repositories, which in our case encompasses 171
of the 213 projects in our multilingual corpus. We use cross-project performance to assess generalisation, rather
than performing multiple longitudinal splits.

To implement our method, we adapted scikit-learn’s TimeSeriesSplit [48] to split over PR indices and integrated
with A-m. The interested reader can ind our implementation online [39]2.

ACM Trans. Softw. Eng. Methodol.

16 • Profir-Petru Pârt,achi, David R. White, and Earl T. Barr

Table 4. The hyperparameters for both classifiers (RandomForestClassifier and MondrianForestClassifier). We used default
value for all parameters unless the default value is provided in parenthesis, specifically, we used non-standard values for the
number of estimators and class weighting. These decisions were taken using a logarithmic step grid-search on the dev-set
only.
∗Not included in the table for brevity is the values that class_weight can take: Optional[{balanced, balanced_subsample,
custom}]; where custom is provided as a dictionary or list of dictionary from classes to weights.
∗∗Represents ‘balanced_subsample’

Parameter RandomForestClassiier MondrianForestClassiier

n_estimators: int 128 (default: 100) 16 (default: 10)
bootstrap: bool True False
max_depth: Optional[int] None None
min_samples: Union[int, loat] 2 2
criterion: {gini, entropy} gini N/A
min_sample_leaf: Union[int, loat] 1 N/A
min_weight_fraction: loat 0.0 N/A
max_features: Optional[{sqrt, log2}] sqrt N/A
max_leaf_node: Optional[int] None N/A
min_impurity_decrease: loat 0.0 N/A
min_impurity_split: Optional[loat] None N/A
oob_score: bool False N/A
class_weight* bal_sub** (default: None) N/A
ccp_alpha: loat≥0.0 0.0 N/A
max_samples: Optional[Union[int, loat]] None N/A

5.5 Hyperparameters

To choose our hyperparameters for both RandomForestClassiier (RF) and MondrianForestClassiier (MF), we
performed a small logarithmic step grid-search from 8 to 256 over number of classiier. We used their default
values for all other hyperparameters. 128 (RF) and 16 (MF) performed well on our dev-set. These values are also
close to the default values: 100 (RF) and 10 (MF). The former is in line with advice from Oshiro et al. [30]. We
expected class imbalance in our dataset, so we opted to use a class reweighing scheme (balanced subsamples) to
improve the performance of Random Forests. This ensures that, during training, a tree estimator sees a subsample
with a balanced number of samples from each class in the training set. MondrianForestClassiier learns splits
online via a Mondrian Process, so it does need hyperparameters for splitting, and therefore lacks most of a
RandomForestClassiier hyperparameters. Table 4 shows default values as well as our non-standard choices.

6 REPRODUCING RCLINKER, THE STATE OF THE ART IN OFFLINE COMMIT-ISSUE
SUGGESTION

As stated in the introduction, A-m tackles a new problem: for pull requests (PR), it suggests PR to issue links
at submission. This problem is inherently online. To baseline A-m, we turn to the related oline, commit-issue
linking task. Tools solving this problem aim to repair histories for use in other productivity-enhancing tools that
consume histories. Here, we considered two: RCLinker [23] and Rath et al.’s link classiier [44]. These approaches
use diferent data sets and diferent feature spaces. Rath et al.’s have not made their classiier publicly available.
Another blocker for us is that Rath et al.’s link classiier relies on features that would be in the future in our

2https://github.com/PPPI/a-m/blob/master/Util/CrossValidationSplits.py

ACM Trans. Softw. Eng. Methodol.

https://github.com/PPPI/a-m/blob/master/Util/CrossValidationSplits.py

Aide-mémoire • 17

online setting. Thus, we turned to RCLinker. To efect this comparison (Section 6.2), we needed to reproduce
and adapt RCLinker. Because of its importance, we sanity-check our reproduction of RCLinker, RCRep, against
published results, and then adapt it to our problem in two stages: lifting it from commits to PRs and replacing
its commit summariser. Section 6.2 details the comparison between A-m and RCRep and demonstrates that,
unsurprisingly, an approach, like A-m, which is tailored to the PR-issue linking, outperforms one that is not.
Concretely, A-m outperforms by 0.62 in precision, achieving 0.76 at similar recall (0.37 vs 0.36). RCRep’s similar
recall is a testament to RCLinker’s solid design.

6.1 Constructing RCRep

To adapt RCLinker to A-m’s PR-issue linking task, we irst had to reproduce it on its original commit-issue linking
task. We then modiied it to solve the PR-issue linking task with a pair of adaptors: an input that translates
PR-issue linking into a commit-issue linking problem and an output adaptor that maps RCLinker’s solution back
to PR-issue links. As a faithful reproduction would discard potentially useful information such as PR descriptions,
we also explore using them as a substitute for commit summaries.

RCLinker deines a feature space over commitśissue links. We discussed these features in Section 4; Le et al.
apply these features to commits, not PRs. As usual, RCLinker irst extracts these features from an input project.
As commit messages are often short (as best practice encourages [25]), Le et al. employ ChangeScribe [24] to
automatically summarise commits; RCLinker extracts its textual features from these summaries. It is its reliance on
ChangeScribe that restricts RCLinker to Java. They train a Random Forest classiier on the derived feature vectors.
RCLinker works over the space of all possible links (� ×�); to avoid overwhelming the classiier with negative
links, they introduce a novel undersampling algorithm. To form negative links, this algorithm replaces issues or
commits in a true link with up to ive of their nearest neighbours in the feature space. This undersampling does
not scale well to the online case Ð the time taken to undersample grows linearly with both the total number of
links and the number of artefacts associated with each link, i.e. � (� (� + �)). We empirically observed Mondrian
Forests to be resilient to the class imbalance problem this undersampling mitigates.
We implemented RCLinker’s feature set and classiier; this serves as the internal classiier for our adapted

variants. It solves the commit-issue linking problem3. Our core classiier reproduction depends on Change-
Scribe [24] for commit summaries. Our implementation uses a modiied version of the ChangeScribe Eclipse
plugin that can be run headlessly. As our RCLinker classiier is the lynchpin of our adaptations, we validate it on
Bachmann et al.’s original commit-issue problem [4] on two corpora: the Apache Commons [4] on which Le et al.
evaluated RCLinker and our Java corpus from Section 5.1. Table 6 shows the results on the Apache Commons
corpus. Our reproduction obtains similar results with only a slight penalty to Recall. We note that the Random
Forest implementations in SciPy [19] and in Weka [15] may use diferent defaults. Table 5 shows the result on
our Java corpus. It demonstrates strong generalisation beyond the Apache Commons corpus used in the original
RCLinker paper and irst introduced by Bachmann et al. [4].

We adapt our RCLinker reproduction to the PR-issue linking task in two stages. In the irst stage, we wrap its
classiier in two translators. The input translator converts PR or issue events into queries over commit-issue links.
The output translator converts the commit-issue links predicted by the classiier into PR-issue links: it links a PR
to an issue if any of the commits from that PR are linked to the issue. We name this adaptation łRCRepCSž, as it
uses ChangeScribe.

In the second stage, we further adapt łRCRepCSž to our setting and replace ChangeScribe with PR descriptions.
This allows us to assess the impact of commit summarisation on the task. We name this variant łRCRepž. While
commit messages are usually short Ð developers are encouraged to keep them within 72 characters Ð PR

3Reproduction is often thankless and hard. We thank Le et al. for being extremely helpful and responsive to our requests during our
reproduction of their work.

ACM Trans. Softw. Eng. Methodol.

18 • Profir-Petru Pârt,achi, David R. White, and Earl T. Barr

Table 5. Performance values on the Java Corpus for RCRepCS when solving the commit-issue prediction task. This evaluation
confirms that our reproduction of RCLinker is efective; indeed, we find it generalises well beyond the corpus used in the
original paper.

Repository F1-Measure Precision Recall

Bilibili/ijkplayer 0.39 0.90 0.27
facebook/fresco 0.59 0.88 0.47
googlei18n/libphonenumber 0.56 0.80 0.48
google/android-classyshark 0.76 0.97 0.65
google/gson 0.45 0.75 0.34
iluwatar/java-design-patterns 0.24 0.46 0.18
JakeWharton/butterknife 0.72 0.72 0.75
mikepenz/MaterialDrawer 0.75 0.76 0.75
nostra13/Android-Universal-Image-Loader 0.79 0.85 0.74
ReactiveX/RxAndroid 0.45 0.75 0.35
roughike/BottomBar 0.55 0.80 0.44
square/leakcanary 0.43 0.53 0.38
square/picasso 0.29 0.35 0.27
wequick/Small 0.49 0.50 0.51
Median 0.52 0.76 0.46

Table 6. Performance values on the original Apache Corpus for RCRepCS when solving the commit-issue prediction task.
We bias our reproduction towards higher precision to account for the shit to the perspective use-case, and we observe a
higher performance of our reproduction relative to the results reported in Le et al. [23] for F1-Score and Precision at the cost
of Recall.

Repository F1-Score Precision Recall

RCRepCS RCLinker RCRepCS RCLinker RCRepCS RCLinker
CLI 0.76 0.61 0.70 0.45 0.88 0.91
Collections 0.82 0.59 0.72 0.43 0.95 0.92
CSV 0.86 0.54 0.87 0.39 0.85 0.88
IO 0.66 0.70 0.96 0.59 0.50 0.87
Lang 0.82 0.72 0.82 0.58 0.83 0.94
Math 0.55 0.70 0.84 0.61 0.42 0.83

Overall 0.74 0.64 0.82 0.51 0.74 0.89

descriptions tend to be longer. We create a new variant of our reproduction, RCRep, which further replaces
ChangeScribe summaries with PR descriptions. This coniguration assess the quality of ChangeScribe as a source
of textual information relative to developer Pull-Request discussions. Table 7 shows the impact of this change; in
short, PR summaries outperform ChangeScribe summaries. In the remainder of this section, we use RCRep to
refer to both RCRepCS and RCRep.

As Section 5.4 details, we longitudinally compare RCRep and A-m. For A-m, we train it on the irst 80% of events
in a repository and evaluate it on the last 20%. We request a prediction whenever a PR is submitted or issue is
closed. For RCRep, we create a repository view that represents the irst 80% of the repository. We then provide it
the true links and undersample RCRep links using RCLinker’s method described above. We then evaluate RCRep
by asking it to predict the links that exist within the last 20% of events from a repository.

ACM Trans. Softw. Eng. Methodol.

Aide-mémoire • 19

Aide-mémoire is an online assistive tool that outputs a variable-length ranked list of suggested links. RCLinker
outputs unranked commit-issue links. To enable comparison, RCRep’s output adaptor collapses all of its core
classiier’s suggestions for commits in the same PR into a single list. RCRep orders these suggestions by the output
probability from its Random Forests classiier; it breaks ties by the distance between PR and issue identiiers,
which GitHub assigns jointly and in increasing order to issues and PRs as they are created. Because we compare
both variants to A-m, and RCRepCS is Java-only, Section 6.2 considers only Java projects and shows that A-m
outperforms both variants.
A-m and RCRep use random forest classiiers, which require hyperparameter settings: we set the number of

trees to 10 for RCRep, in line with the original paper, and 128 for A-m when using a RandomForestClassiier or
16 when using a MondrianForestClassiier, as discussed in Section 5.5; the separation criteria was entropy for
RCRep, while Mondrian Trees employ a budget to decide when they should reine the partition of the space [22].
Additionally, we use the default random forest probability cut-of of 0.5. Dynamic cut-of due to prediction of
‘no_pr’ or ‘no_issue’ occurs on top of the default cut-of when applicable. In tf-idf, the minimum term count was
two and the term cut-of set at 95%. For RCRep undersampling, we use the ive nearest neighbours, setting this
hyperparameter following the RCLinker authors.

6.2 Benchmarking Aide-mémoire Performance with RCRep

We now quantify Aide-mémoire performance relative to RCRep’s. We seek to answer the following question:

RQ1 How well does RCRep, our reproduction of the state-of-the-art at predicting commitśissue links, generalise
to PRśissue links?

Unsurprisingly, Aide-mémoire outperforms RCRep on the PR-issue linking task. We further improve RCRep’s
performance by adapting it to directly to use PR descriptions in place of ChangeScribe’s commit summaries.
Table 7 shows detailed results. Overall, Aide-mémoire clearly outperforms RCRepCS and RCRep across the

Java corpus. In terms of precision, RCRepCS achieves its best result on twitter / distributedlog , which represents
a large and well linked project; in terms of F1-Score, it achieves its best result on the similarly well linked
google/ lexbox−layout. We note that using PRs only as a source of natural language description improves
performance across most projects. We speculate that A-m’s use of Mondrian Forests also allows it to update the
prior on a per-sample basis, while RCRep, which uses Random Forests, relies on a periodic update of predicates
on our feature vectors. This enables A-m to reine precise bounding boxes for the data observed, while RCRep is
restricted to splitting planes. We conclude that attempting to solve the issue-PR prediction problem as an instance
of the commit-issue task is inefective even when a change summariser is provided. This validates our decision
to solve the issue-PR link prediction separately and make use of PR level metadata. In particular, the high false
positive rate and the lack of ‘no_pr’ or ‘no_issue’ entities impacts the precision of RCRep. Also, of note is that
both A-m and RCRep fail on projects that have very little linking at the PR level Ð there is insuicient data to
train an accurate classiier; one such project is Android−Universal−Image−Loader, which is just barely above
our training example threshold employed as a ilter on our corpus.

RQ1 Finding (Comparison with SOTA)

RPRecp does not generalise well to PR-Issue linking, achieving 0.14 precision.

While RCRep performs poorly on issue-PR link prediction, we emphasise that RCLinker was designed to
predict commit-issue links; we include this comparison to motivate the separate handling of issue-PR links.
For completeness, we also evaluate the performance of RCRepCS on the original commit-issue link prediction
problem; we provide these results in Table 5. Additionally, RCLinker is applicable to scenarios where there is no

ACM Trans. Softw. Eng. Methodol.

20 • Profir-Petru Pârt,achi, David R. White, and Earl T. Barr

Table 7. Mean performance values of predicting issue-PR links across a sample of the Java Corpus for RCRepCS, RCRep, and
A-m. The approach taken by RCRepCS to solve the commit-issue link prediction does not generalise to issue-PR links, even
when provided with PR descriptions as summaries, whereas A-m performs well on most projects. Extreme (0.0 or 1.0) results
can be observed on small projects where there are few queries in the sufix. The projects with an (*) have had their names
shortened for presentation purposes.

Repository Mean Precision Mean Recall Mean F1

RCRepCS RCRep A-m RCRepCS RCRep A-m RCRepCS RCRep A-m

ijkplayer 0.00 0.00 0.52 0.00 0.00 0.06 0.00 0.00 0.11

AndroidSwipeLayout 0.00 0.00 0.99 0.00 0.00 0.10 0.00 0.00 0.18

fresco 0.01 0.01 0.92 0.51 0.51 0.37 0.03 0.02 0.53

redex 0.06 0.16 0.76 0.47 0.46 1.00 0.10 0.20 0.86

libphonenumber 0.01 0.00 0.83 0.50 0.20 0.26 0.03 0.00 0.39

android-classyshark 0.00 0.33 0.99 0.00 0.72 0.54 0.00 0.45 0.70

lexbox-layout 0.48 0.29 0.79 0.79 0.75 0.46 0.60 0.42 0.58
gson 0.06 0.07 0.92 0.48 0.36 0.35 0.10 0.11 0.51

EventBus 0.00 0.13 0.65 0.00 0.20 0.45 0.00 0.15 0.53

java-design-patterns 0.06 0.17 0.89 0.19 0.22 0.06 0.09 0.19 0.12
butterknife 0.00 0.08 0.73 0.30 0.64 0.30 0.00 0.14 0.42

RxJava-Android-Samples 0.41 0.29 0.71 0.50 0.43 0.59 0.39 0.34 0.64

aUPTR* 0.00 0.00 0.99 0.00 0.00 0.25 0.00 0.00 0.40

MaterialDrawer 0.04 0.06 0.93 0.53 0.58 0.79 0.07 0.11 0.86

Hystrix 0.04 0.28 0.71 0.43 0.32 0.29 0.08 0.30 0.41

AUIL* 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
RxAndroid 0.03 0.20 0.86 0.15 0.80 0.50 0.05 0.31 0.63

BottomBar 0.01 0.07 0.86 0.28 0.04 0.22 0.02 0.05 0.35

leakcanary 0.09 0.19 0.88 0.24 0.30 0.35 0.13 0.23 0.50

picasso 0.00 0.04 0.78 0.27 0.55 0.35 0.01 0.08 0.49

distributedlog 0.95 0.64 1.00 0.10 0.10 1.00 0.18 0.17 1.00

Small 0.01 0.01 0.01 0.17 0.16 0.01 0.01 0.03 0.01
zxing 0.15 0.11 0.72 0.99 0.96 0.20 0.25 0.20 0.31

Overall 0.10 0.14 0.76 0.30 0.36 0.37 0.09 0.15 0.46

PR information at all, and thus RCLinker and A-m are complementary: historical data could be repaired using
RCLinker, followed by adopting A-m to improve future linking. In general, oline tools such as RCLinker are
hindered by reliance on commit-level information, which makes them less applicable to modern projects that
follow a PR-centred development process.

7 EVALUATING AIDE-MÉMOIRE ON THE ONLINE PR-ISSUE LINKING PROBLEM

First, we show that the state of practice in PR linking remains dismal and that tools like A-m are needed. We
then evaluate A-m’s performance on the PR-issue linking task over a large multilingual corpus. We observe that
A-m is indeed language-agnostic and scales to larger projects, beneits from the use of an online classiier and
that it shows tolerance to noisy training data. We assess the usefulness of A-m as a developer aid and show that
developers could beneit from such a tool.

ACM Trans. Softw. Eng. Methodol.

Aide-mémoire • 21

7.1 The Dismal State of Issue-PR Linking on GitHub

To determine the state of linking practice in the wild on GitHub, we irst queried GHTorrent [13] for those projects
that provide a CONTRIBUTING.MD ile or similar within the root of the project (which is a GitHub convention
for the location of the ile). CONTRIBUTING.MD iles are not unique to GitHub; they are indeed common to OSS
in general. Our focus on GitHub is a pragmatic one, GHTorrent [13] enables answering such question via SQL
queries. Further, GitHub encourages projects to have CONTRIBUTING.MD iles at project creation via prompts and
providing templates. Still, we found only around 4.7% of all the projects available via GHTorrent include such a
ile (167109 out of 3537142 at the time of query).
Restricting ourselves to these projects, we then considered two ways to obtain subsamples for manual in-

vestigation: biasing the sample by popularity, i.e. we weight the probability of each project being selected by
the number of GitHub stars the project has as a proxy for popularity, and performing a uniform sample over
this restricted set of projects. In both scenarios we were looking for explicit statements that links have to be
recorded. Example statements are ‘It is best practice to have your commit message have a summary line that
includes the ticket number [...].’, ‘This is also the place to reference the GitHub issue that the commit closes.’, ‘All
Pull Requests, [...], need to be attached to a issue on GitHub.’. We also included those projects that referenced
an external resource that described a good commit message and that recommended linking to afected ticket
numbers.
We sampled 200 projects for each method and were able to obtain the ile for 128 projects from the uniform

sample, while we obtained 155 for the popularity-biased sample. Of note here is that we attempted to obtain the
most recent version of CONTRIBUTING.MD from each project’s GitHub page rather than the GHTorrent blob. Our
results are as follows: one third of the randomly sampled projects made explicit reference to linking practice (43
out of 128), versus around 43.5% (68 out of 155) of the popularity-biased sample. This suggests that the majority
of projects on GitHub do not require that the project’s collective memory in terms of code-issue traceability links
be maintained by Pull Request submitters. It is worth mentioning that we have not considered if the community
enforces such a requirement even when it is not codiied, or, conversely, if when the practice is codiied whether
it in enforced. Nevertheless, the diference between the uniform and the popularity-biased sample suggests
that more popular projects do tend to require such linking. A further observation is that the popular projects
that are maintained by a corporate entity Ð Google, Facebook, and Microsoft in the sample Ð tend to have a
company-wide policy regarding contributions from the community that require that issues and Pull Requests be
linked and that a Pull Request references an already open issue in order for the submission to be accepted.

7.2 The uality of Aide-mémoire’s Suggestions

We evaluate A-m on a multilingual corpus containing 213 projects written in six programming languages.
Section 5.4 presents the longitudinal evaluation protocol. The corpus contains a variety of project sizes, so we are
able to evaluate both the generality and scalability of A-m. Recall that A-m provides a list of suggested issues
to be linked to a PR at submission time, and a list of suggested PRs to be linked when an issue is closed. When
considering the performance of our system, we sought to answer the following questions:

RQ2 What proportion of our suggestions contains at least one true link in a �-length list (� = 1, 3, 5)?
RQ3 What is the mean average precision (MAP) of our suggestions?
RQ4 Does our system suggest links that were later caught by PR reviewers?

A-m uses ‘no_pr’ and ‘no_issue’ entities to truncate its suggestions. If these special entities appear in the
� suggestions, we truncate the suggestion list at that point to avoid suggesting unlikely links. Through these
entities, A-m correctly learns to be silent when appropriate. It ofers a correct suggestion or remains appropriately
silent in 86% of cases for � = 1; we will henceforth refer to this desirable behaviour as List Hit Rate, as per
Deinition 5.2. If we consider only predictions of actual links (rather than no prediction), A-m suggests a correct

ACM Trans. Softw. Eng. Methodol.

22 • Profir-Petru Pârt,achi, David R. White, and Earl T. Barr

100 101 102

PRs per month (R^2 = 0.132)

0.0

0.2

0.4

0.6

0.8

1.0

Lis
t H

it
Ra

te Language
Java
JavaScript
C#
TypeScript
Scala
C++

Fig. 5. Performance of A-m quantified by the percentage of queries where A-m is correctly silent when there is no suggestion,
or we report at least one correct link when there is a suggestion to be made for list length � = 5, median result presented as a
blue square. We see that system performance does not degrade severely with the increase of PRs submited per month (and
by proxy) project size; indeed, we find no statistically significant trend associated with the number of PRs per month.

link in 94% of such cases for � = 1 (same for � = 3 and � = 5). Figure 5 shows a more detailed view for � = 5. We
consider values � = 1, 3, 5 to cover the most likely usecases of A-mÐ � = 1 represents trusting the top prediction
greedily, while � = 3, 5 represent an user glancing over a short list to select the suggestion We now answer RQ2:

RQ2 Finding (Accuracy)

Aide-mémoire suggests true links in a k-length list for � = 1, 3, 5 in 94% of the cases.

We now consider full suggestion lists; we use Mean Average Precision (MAP) to measure their quality. Table 8
shows that A-m consistently achieves high MAP. Indeed, only seven projects fall below 0.6 MAP, on three of
which A-m fails to learn any model. We observe this failure mode when the training data lacks insuicient
true links. However, as results for HR are consistently above 0.5, we have succeeded in making A-m learn to be
appropriately silent when it is unsure of its predictions. Overall, A-m produces highly precise suggestions, as our
answer to RQ3 shows:

RQ3 Finding (Mean Average Precision)

Aide-mémoire achieves a median MAP of 0.93 (mean 0.89) over our multilingual corpus.

ACM Trans. Softw. Eng. Methodol.

Aide-mémoire • 23

100 101 102

PRs per month (R^2 = 0.013)

0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
Av

er
ag

e
Pr

ec
isi

on

Language
Java
JavaScript
C#
TypeScript
Scala
C++

Fig. 6. Performance of A-m reported as Mean Average Precision as a function of the number of PRs per month for a project,
median result as a blue square There is no statistically significant trend with scale.

M
e
a
n

 A
v
e
ra

g
e
 P

re
c
is

io
n

1.0

0.8

0.6

0.4

0.2

0.0

Java JavaScript C# TypeScript Scala C++

Language

Fig. 7. Performance of A-m reported as Mean Average Precision across languages. There is no statistically significant trend
with language (as checked using a two-sample T-test).

ACM Trans. Softw. Eng. Methodol.

24 • Profir-Petru Pârt,achi, David R. White, and Earl T. Barr

L
is

t
H

it
 R

a
te

1.0

0.8

0.6

0.4

0.2

0.0

Java JavaScript C# TypeScript Scala C++

Language

Fig. 8. Performance of A-m quantified by the percentage of queries where we are correctly silent when there is no suggestion,
or we report at least one correct link when there is a suggestion to be made for list length � = 5. We can see that the project
language has negligible impact on performance and the median stays close to 0.86 (the red line); there is no statistically
significant diference between languages, except for Scala where we find that there is an efect size of � = −3.38 with
� = 0.001 using a two-sample T-test.

M
is

s
e
d

 b
y
 P

u
ll
 R

e
q

u
e
s
t

S
u
b

m
it

te
r

1.0

0.8

0.6

0.4

0.2

0.0

Java JavaScript C# TypeScript Scala C++

Language

(a) Percentage of links that were originally missed by the PR
submiter and predicted by Aide-mémoire for the programming
languages considered.

100 101 102

PRs per month (R^2 = 0.016)

0.0

0.2

0.4

0.6

0.8

1.0

M
iss

ed
 b

y
Pu

ll
Re

qu
es

t S
ub

m
itt

er

Language
Java
JavaScript
C#
TypeScript
Scala
C++

(b) Percentage of links that were originally missed by the PR
submiter and predicted by Aide-mémoire as a function of the
project’s number of PRs per month, median result shown as a
blue square.

Fig. 9. Percentage of links missed by the PR submiter and predicted by A-m. Here we can see that our system has the
potential to save development time during the PR process by suggesting links originally missed by the PR submiter and
later discovered by a reviewer. There is no statistically significant deviation among languages.

ACM Trans. Softw. Eng. Methodol.

Aide-mémoire • 25

Table 8. Performance of A-m using a Mondrian Forest Classifier across a uniform sample of projects from the second corpus,
ordered by PRs per month, ater filtering projects that have less than 25 links in total.

Repository Language PR/m MAP HR P R

rtyley/bfg-repo-cleaner Scala 2.36 1.00 0.74 1.00 0.12
zealdocs/zeal C++ 4.22 0.73 0.93 0.73 0.26
ecomfe/echarts JavaScript 5.43 0.71 0.98 0.71 0.08
beto-rodriguez/Live-Charts C# 8.19 0.87 0.86 0.87 0.47
mobile-shell/mosh C++ 12.31 1.00 0.81 1.00 0.28
sksamuel/elastic4s Scala 13.28 0.93 0.94 0.93 0.48
square/picasso Java 14.76 0.96 0.92 0.96 0.35
square/leakcanary Java 17.64 1.00 0.86 1.00 0.33
Microsoft/code-push TypeScript 18.34 1.00 0.84 1.00 0.25
kriasoft/react-starter-kit JavaScript 20.84 0.89 0.82 0.89 0.20
AutoMapper/AutoMapper C# 21.52 0.94 0.83 0.94 0.47
electron-userland/electron-builder TypeScript 22.39 0.95 0.96 0.95 0.59
NLog/NLog C# 25.79 0.95 0.76 0.95 0.41
witheve/Eve TypeScript 29.09 0.89 0.91 0.89 0.44
Microsoft/vscode-react-native TypeScript 33.26 1.00 0.85 1.00 0.43
Dogfalo/materialize JavaScript 37.50 0.95 0.90 0.95 0.36
scala-js/scala-js Scala 40.63 0.89 0.45 0.89 0.15
spring-projects/spring-boot Java 48.00 0.94 0.90 0.94 0.23
citra-emu/citra C++ 62.32 0.90 0.77 0.90 0.22
facebook/osquery C++ 65.15 0.92 0.80 0.92 0.43
angular/material2 TypeScript 165.89 0.82 0.77 0.82 0.22
Sample (mean) 31.85 0.92 0.84 0.92 0.32
Sample (median) 21.52 0.94 0.85 0.94 0.33
Overall (mean) 32.13 0.89 0.84 0.89 0.30
Overall (median) 17.64 0.93 0.86 0.93 0.29

A-m ofers high-quality suggestions, with the correct link frequently appearing among the irst two suggestions.
A-m has low recall, managing to recover only 30% of the links removed in the validation suixes, and requires
some initial data to bootstrap the model. Thus, it cannot be deployed at the start of a new project, rather it must
be adopted after the project has completed at least one development cycle. A-m successfully learns to predict
links that were missed by the original submitter of PRs, i.e. those that were suggested by Pull Request reviewers
during the code review process: 28% of the recovered links were predicted using only the PR description and its
commits before any discussion took place, i.e. 18% out of all originally missed links, and as such the tool can help
reduce the burden on change reviewers by ofering link suggestions to the submitter. A more detailed breakdown
of such cases can be seen in Figure 9. In sum, we answer RQ4:

RQ4 Finding (Predicting Missing Links)

Aide-mémoire found 18% of the links that were initially missed by PR reviewers, strong evidence that its
adoption would improve PR reviewing.

ACM Trans. Softw. Eng. Methodol.

26 • Profir-Petru Pârt,achi, David R. White, and Earl T. Barr

7.3 Generalising across Languages and Project Sizes

We hope that A-m will change the state of practice in PR-Issue linking. To realise this ambition, it must scale
to large projects and language-agnostic, so that large projects and projects using diferent languages can easily
adopt it. To do so, we seek to answer the following question:

RQ5 Does Aide-mémoire’s performance degrade with project size or change of project language?

Figures 5, 6, 8, and 7 summarise its performance while Table 8 shows a uniform sample of the results. The MAP
is consistently near the median result of 0.95 across languages and there is no statistically signiicant deviation
according to a two-sample t-test. The results for HR show a similar story: no deviation across languages from
our general result of 0.86 except for Scala, which has a small (� = −3.38) but statistically signiicant deviation
(� = 0.001). For results along the project scale dimension, we can see that there is no statistically signiicant trend
with all Pearson �2 values below 0.1, hence we anticipate no degradation of performance for large projects.

RQ5 Finding (Scalability)

Aide-mémoire scales to larger project sizes with no impact on performance (Pearson’s �2
< 0.05 for MAP

and Pearson’s �2
= 0.13 for HR). A-m also performs consistently across languages Ð the results show no

statistically signiicant deviation for MAP according to a two-sample t-test, while only Scala has a small
performance drop for HR (� = −3.38 and � = 0.001)

7.4 Resistance to Noise

A-m is online and learns from humans as they accept or reject its suggestions. To err is human, so A-m must
contend with, and remain robust in the face of, humans giving it incorrect links. Here, we intentionally mislabel
training data and observe its noise tolerance, we seek to answer:

RQ6 To what extent does Aide-mémoire tolerate noise in its training labels?

As weak labelling is inherently noisy, we explore A-m’s tolerance to noise by injecting increasing levels of
noise and observing the performance proile in terms of P-R Curves. In order to observe and quantify the noise
tolerance of A-m, we augment the training data by randomly lipping a proportion of the examples, i.e. adding a
false link as true, or marking a true link as false. We control this proportion and explore from no noise (0%) up to
95% noise. We run this experiment over the same internal development corpus as our Feature Selection detailed
in Section 4. We perform 10-fold cross validation at each noise ratio, validating performance using the unaltered
ground truth. Due to performing cross-fold validation, we additionally take care to elide links and references that
may leak information regarding a held-out fold from the training folds. Looking in Precision-Recall space, we
observe four main performance regimes with a slight improvement at low-noise (5-10%) for both Precision and
Recall followed by a step-wise decline in Precision and a linear decline in Recall. The irst regime switch is at 15%
noise with Precision going from 0.7 − 0.72 to 0.66 and Recall from 0.12 − 0.13 to 0.10 − 0.11. The second regime
switch is at 65% noise with a jump down in Precision to 0.45 and Recall at 0.04. The inal regime switch is at 90%
noise, with performance fully degrading to 0.2 Precision and 0.01 Recall. Fixing Recall at 8%, we now answer RQ6:

RQ6 Finding (Robustness)

Aide-mémoire tolerate noise of up to 40% of the labels being incorrect if we require precision to exceed
0.66.

ACM Trans. Softw. Eng. Methodol.

Aide-mémoire • 27

Table 9. Performance of A-m using a Random Forest Classifier across a uniform sample of projects from the second corpus,
ordered by PRs per month, ater filtering projects that have less than 25 links in total.

Repository Language PR/m MAP HR P R

greenrobot/EventBus Java 2.41 1.00 0.77 1.00 0.17
wkhtmltopdf/wkhtmltopdf C++ 3.86 0.00 0.78 0.00 0.00
zealdocs/zeal C++ 4.22 0.00 0.50 0.00 0.00
feathersjs/feathers JavaScript 4.82 0.00 0.70 0.00 0.00
hexojs/hexo JavaScript 6.89 1.00 0.55 1.00 0.14
ngrx/store TypeScript 7.31 1.00 0.73 1.00 0.30
databricks/spark-csv Scala 8.47 0.00 0.56 0.00 0.00
roughike/BottomBar Java 11.00 0.00 0.68 0.00 0.00
milessabin/shapeless Scala 11.17 1.00 0.81 1.00 0.14
mobile-shell/mosh C++ 12.31 1.00 0.56 1.00 0.04
AutoMapper/AutoMapper C# 21.52 1.00 0.39 1.00 0.15
tildeio/glimmer TypeScript 28.42 1.00 0.83 1.00 0.11
chartjs/Chart.js JavaScript 34.82 0.82 0.46 0.83 0.15
square/okhttp Java 38.91 0.88 0.61 0.88 0.05
rangle/augury TypeScript 45.12 1.00 0.48 1.00 0.02
rangle/batarangle TypeScript 45.12 1.00 0.51 1.00 0.07
mxstbr/react-boilerplate JavaScript 51.62 0.67 0.40 0.67 0.07
realm/realm-java Java 55.92 0.88 0.56 0.90 0.08
apollostack/apollo-client TypeScript 60.30 1.00 0.71 1.00 0.08
ng-bootstrap/core TypeScript 67.82 0.86 0.52 0.86 0.06
mrdoob/three.js JavaScript 85.45 0.81 0.66 0.81 0.17
Sample (mean) 28.93 0.71 0.61 0.71 0.09
Sample (median) 21.52 0.88 0.56 0.90 0.07
Overall (mean) 37.09 0.70 0.63 0.70 0.10
Overall (median) 17.70 0.90 0.63 0.91 0.08

We believe this result is strong, because developers using A-m would be familiar with the system they work on
and unlikely to mislabel more than 40% of the suggestions. Indeed, we expect mislabellings to be rare, the noise
in A-m’s data to drop, and A-m’s performance to improve over time.

7.5 The Importance of Mondrian Forests

A-m uses Mondrian Forests because they are online. They are much less commonly used than Random Forests.
One can, of course, adapt an oline technique, like Random Forests, to operate in a quasi-online mode via periodic
batched retraining. However, such retrained models could not quickly beneit from a live developer feedback.
Nonetheless, we investigate the feasibility of building such a variant by comparing A-m’s default Mondrian
Forests implementation to Random Forests trained on the full history in an oline setting, this answers the
following ablation question:

RQ7 How much of Aide-mémoire’s performance relies on its use of Mondrian Forests over Random Forest?

A-m’s Random Forest variant achieves worse results on the same validation systems. While both conigurations
show a high MAP (0.89 for Mondrian Forest and 0.70 for Random Forest), the Random Forest results fall quite
short on HR and recall, showing a recall of only 10%. Detailed results can be seen in Table 9. We hypothesise that

ACM Trans. Softw. Eng. Methodol.

28 • Profir-Petru Pârt,achi, David R. White, and Earl T. Barr

class imbalance, which we observed Mondrian Forests to deal better with, and the lack of a feedback loop during
validation impacted the performance of the Random Forest based implementation. Our answer to RQ7 follows:

RQ7 Finding (Mondrian vs Random Forest)

Replacing Aide-mémoire’s Mondrian Forest classiier with an oline Random Forest classiier penalises
its performance: HR falls to 0.63 from 0.84 and recall to 0.10 from 0.30.

As we can see, use of Random Forests, even given the full history, severely degrades Recall, making it doubtful
that deploying them in batch mode would be competitive to Mondrian Forests.

7.6 Threats to Validity

A-m faces standard threat to its internal validity, which we mitigate by making our data and experimental harness
available for examination and reproduction. Next, we discuss three external threats, of which the last, potential
bias from our collection process, is the most important, before turning to the construct validity threat posed by
our reliance on weak labelling.
External: Our exclusive use of GitHub and its PRs poses an external threat, because of the extreme class

imbalance considering only projects that use PRs, as Kalliamvakou et al. explain in their Peril VI [20]. We cannot
directly mitigate this threat because we evaluate A-m on PR statistics, like activity. We observe that the bias
introduced by our popularity-thresholding reduces the class imbalance in PR usage in GitHub projects.

Another external threat is overitting, which our feature selection could exacerbate. To counteract this threat,
we collected a separate internal dev set. We therefore run the risk of underperforming in the inal evaluation if
the dev set is unrepresentative of the wider corpus, but we accept this potentially suboptimal performance in
order to minimise the risk of overitting.
When considering predictions, we restrict the candidate set to open issues. We do so because we envision

developers using A-m as a triage assistant. This choice, however, means that we may miss valid links in scenarios,
such as two PRs referencing a single issue where the irst closes it. Section 7.1 shows that CONTRIBUTING.MD’s
typically recommend maintaining a one-to-one mapping between issues and PRs. GitHub’s CONTRIBUTING.MD
template and many large corporations, such as FAANG, also recommend this practice. Taken together, these
recommendations suggest the risk of such missed links is small.
To collect our project corpus, we irst ilter by language and size, then use a popularity-threshold over the

distribution of projects to avoid low quality or low activity projects (Section 5.1). This collection process introduces
three distinct threats to the external validity of our results. We consider only Java, JavaScript, C#, TypeScript,
Scala, and C++ to make data collection suiciently fast and cope with GitHub’s bandwidth restrictions. To mitigate
this threat, we uniformly sample ive languages from an existing ranking of popular languages [11], then added
Java to allow comparing A-m with RCLinker, the current state-of-the-art. We ilter by size only to remove trivial
projects, which abound in GitHub. Our threshold of 100 LOC across all project iles is conservative, from irst
principles, and standard practice. We want to bias our corpus toward maintained and consequential projects.
Selecting projects by popularity achieves this. To mitigate the external threat this introduces, we note that our
popularity-threshold selection does not directly rely on variables that we use in our evaluation.

Construct Validity: A-m’s reliance on weak labelling constitutes the principle threat to its construct validity.
Establishing a ground truth over data requires choosing a point on the spectrum between two poles Ð a golden
set of manually labelled and validated data and using unsupervised methods over vast quantities of uniformly
sampled raw data occurring in the wild. The experimental goal determines each pole’s desirability. Since we
designed A-m to be language-agnostic and to scale, we opted to be closer to the unsupervised pole.

ACM Trans. Softw. Eng. Methodol.

Aide-mémoire • 29

We constructed the weak labels ofmissing links by removing those that had previously been manually recorded
by developers. Thus, our training data is representative only of those links included by developers at PR submission
or during change review, rather than those they missed completely. Even if actual links and those recognised by
developers are statistically diferent in the feature space, it is still useful to suggest such links; we found that 16%
of PRs are subsequently linked and automating this via A-m would save time.
To mitigate this construct threat, we validated our initial knowledge construction by manually classifying

links recorded by our heuristics on a sample of 30 positive and 30 negative examples uniformly selected from all
projects. We initially found a signiicant number of links to the issue/pull request with the ID ‘#1’. Such incorrect
links were created due to IDs introduced by a migration tool and detected by our heuristics. We removed these
links and reassessed the correctness of the remaining links to ind more than 80% of the links detected by our
heuristic as correct.

8 QUALITATIVE ANALYSIS OF AIDE-MÉMOIRE’S SUGGESTIONS

In this section, we manually inspect a sample of links suggested by A-m over our development dataset. We detail
how and when A-m works, how it fails, and speculate about the root causes of its successes and failures. Based
on the type of links we observe, we also speculate about how A-m could impact the state of practice.

8.1 Aide-mémoire’s Suggestions

To evaluate the quality of the link suggestions by Aide-mémoire, we uniformly sampled 20 links per project in
our development corpus, for a total of 100 links, then manually inspected them. Given A-m’the feature space, we
expected links to arise either due to social links (shared contributors/participants) or textual overlap between
titles alone or titles and descriptions. From manually inspecting our ground-truth, we expected multiple PRs
proposed for the same issue, cross-repository links, and links migrated from external tools to GitHub to confuse
A-m.

Our manual analysis conirmed our expectations about A-m’s link suggestions, modulated by the reporter’s
interaction with an issue and the temporal co-occurrence of updates to PRs and issues. None of our concerns
about A-m being confused were realised: two did not occur in our sample and A-m was not confused by the one
that did. As expected, given its feature space, A-m does tend to suggest links when there is a title or description
textual overlap between the PR and issue. This varied by project, but was around 53%. In 20ś25% cases, it matched
PRs and issues depending on whether the reporter commented on the issue, was assigned to it, or otherwise
interacted with it. Further, PR-issue pair suggestions that had updates or comments that are close in time to each
other tended to be greatly favoured (85+%). This is a direct consequence of our 14 day iltering window choice.
Additionally, we observed A-m suggesting transitive links that have not been directly linked in GitHub. These
arise when a newer PR is marked as related to an older one that ixed a particular issue. The project does not link
this newer PR to the original issue, so, if this newer PR is accepted (the older one rejected as it is subsumed), then
the original issue is not automatically closed and remains open. This inding shows that our original concern that
multiple PRs per issue did not, in fact, confuse A-m.
A-m achieved the following accuracy under manual analysis: 75% (MPAndroidChart), 80% (RxJava), 35/65%

(Guava) , 65 % (React), and 65/75 % (Plottable). Guava rises to 65% when we remove a God-Issue that dominated
suggestions. Plottable rises to 75 % if we consider links to a release PR as a true link. A-m’s the performance
is consistently high if we ilter out the God-Issue links. This is reasonable since God-Issues and their links are
easy to identify. To obtain Guava’s 65%, we simply ilter, as God-issues, those issues that link to 10 or more PRs.
Migration or cross-tool synchronisation tend to cause God-{Issues,PRs}. Projects, for which either of these cases
hold, could use A-m only on their internal tracking system, which would not include God links. In Plottable, we
observed developers using PRs as both agile stories and agile epics. We chose 10 as our threshold since, from our

ACM Trans. Softw. Eng. Methodol.

30 • Profir-Petru Pârt,achi, David R. White, and Earl T. Barr

priors, we do not expect an Epic to encompass more than 10 stories, and we wanted our deinition of God-issues
to be generous and therefore conservative.

A-m exhibits three main failure modes. If a project dedicates an issue czar to manage public issues and patches,
spurious links can appear when this issue czar interacts with multiple, unrelated issues and PRs during triage
in close temporal proximity. As expected, another failure mode was spurious links caused by migration tools,
especially when references or IDs to artefacts from the previous/external system are kept. Further, migration
blinds A-m to social features: usernames become text tokens in the body of the issue created by a bot account
rather than comments by a GitHub user. Release PRs linked to many issues was the inal failure mode. It is
arguable whether the release PR or only ixing PRs subsumed by the release PR should be linked to the issues
they ix; when they are linked, they become a problematic God PR. In our study, we removed links from issues to
a release PR, since a developer cannot use them to ind an actual ix, but still needs to ind the PR merged into a
release PR.

8.2 Aide-mémoire’s Potential Impact

Aide-mémoire is a developer assistant: it does not fully automate PR-issue linkage. It aims to speed and improve
the accuracy of developer-centered PR-issue linking. Thus, A-m complements a developer ecosystem, such as
GitHub. Developers value PR-issue links and do try to create them. To this end, we observed developers copying
the issue title into the PR title, or adding links directly in the title (a workaround GitHub does not support), or
resorting to overlapping, even if stilted, vocabulary. When interacting with an issue, we observed developers
asking questions designed to build or restore the relevant links before proposing a solution as a PR. Thus, we
expect A-m to serve as memory aid for developers by suggesting links at issue triage/closing and PR submission.
A-m promises to reduce context switching, notably the cost of searching for relevant PRs or issues. Here, A-m
already makes time saving suggestions. The transitive relationships that A-m inds will help close issues linked to
PRs subsumed by newer PRs, thereby automatically trimming the issue backlog as PRs get merged. In Plottable,
developers manually searched for open issues that had already resolved by a merged PR. A-m will speed this
search.

9 RELATED WORK

Good PR-issue linking accelerates development: PR-issue links allow developers to more quickly understand
why a pull-request was submitted or how an issue was resolved in code; they also permit the use of productivity
enhancing techniques like automatic bug localisation [58, 61], or automatic patch generation tools such as
R2Fix [26]. PR-issue links are a developer-centric form of software traceable links, as studied in requirements
engineering (RE). We compare and contrast A-m to software traceability, we detail how modern development
enables and calls for A-m. Finally, we summarise developer-centric work that solves the related commit-issue
linking problem in an oline scenario.

9.1 Traceability

Requirements engineering (RE) focuses on stakeholders, decision makers, and their artefacts: requirements,
documentation, speciication, and design or architectural documents. These artefacts tend to be natural language,
text or speech, and often go unrecorded. When they are recorded, they exist in multiple formats, including
spreadsheets, email, igures, and printed material. They further encompass developer artefacts, such as source
code, pull-requests, commits, and issues, but do not focus on them.
Software traceability seeks to infer traces (i.e. links) between these heterogeneous artefacts [9]. Missing or

hard-to-parse artefacts greatly complicate trace recovery, which is whymuch work on traceability seeks to provide
tooling to decision makers to capture or parse these artefacts [12, 17, 35]. Software artefacts span a multitude

ACM Trans. Softw. Eng. Methodol.

Aide-mémoire • 31

of formats. To extract links between them, traceability tools must contend with the heterogeneity of artefacts.
As a result, they often leverage general, abstract features, such as textual features extracted using Information
Retrieval techniques [6]. Traceability tools face a deployability challenge. Improving traceability requires capturing
developer decisions. To date, researchers have investigated new worklows or invasive instrumentation, which
raises privacy concerns, to record these decisions [3].

In contrast, A-m exclusively focuses on a speciic software traceability problem Ð PR-issue link inference. This
focus enables A-m to side-step the heterogeneity problem. First, version control and issue tracking are almost
ubiquitous in modern software development. PRs and issues are plentiful, well-suited for data hungry machine
learning. Second, their format is well-documented. A-m’s focus on PR-issue link inference also allows it to exploit
the structure in PR meta-data (Section 4). Our preliminary study of łCONTRIBUTING.MDž iles (Section 7.1) also
found that 33 out of 43 projects specify a PR template. To address deployability, we designed A-m to seamlessly
integrate into modern development practice. As Section 3.2 details, A-m suggests links when a developer closes
an issue or submits a PR, when this information is pertinent, without intrusive instrumentation and its attendant
privacy concerns.

9.2 Modern Development

Modern development increasingly relies on tooling that integrates Version Control, Issue Tracking, Wikis,
Continuous Integration and Continuous Deployment under a single system. Notable examples are GitHub and
Atlassian’s JIRA. This new development paradigm poses new problems and opportunities. Kalliamvakou et al. [20]
elucidates these, using GitHub as their archetypal example. A particular opportunity Kalliamvakou et al. identify
is this paradigm’s integration of Version Control and Issue Tracking. A-m rests on this integration. A-m also takes
a step toward realising a promise they identify: interlinking developers, pull requests, issues and commits to ofer
a comprehensive view of the software development process.

Lack of PR-issue links is an ongoing problem in modern software development (Section 7.1). So much so, Agile
practice speciies spring-cleaning an issue (a user story in Agile terminology) backlog. During backlog reinement,
developers remove stale stories and reprioritise and re-estimate remaining stories. When all stories are stale, this
practice discards all sprint-related artefacts Ð issues, feature requests, user stories, as well their links Ð in favour
of starting the next sprint from a clean slate [1]. Projects must resort to this spring-cleaning all too often [56].
Clearly, this practice loses valuable information. The loss of documentation it entails it just one example. By
automatically triaging issues, adoption of PR-issue inference tooling, like A-m, promises to reduce the need to
resort to this drastic measure.

9.3 Missing Links

The missing link problem is the oline prediction problem of inferring missing commit-issue links given a version
history and issue tracker archive. Bachman et al. were the irst to formulate and quantify this problem [4, 5].
Their work aids developers indirectly by helping researchers and tool-smiths avoid the bias introduced by missing
links that could undermine their techniques or tools. Speciically, they show that by assuming recorded links to
be representative of all links, tools are biased to use code from more experienced developers, thus not learning
from mistakes or bugs introduced by less experienced contributors.
Bachman et al. together with Apache Commons developers manually supplied missing links and published

their Apache Commons corpus. Wo et al. are the irst to attempt to automatically infer them. They propose
ReLink [60], which measures the similarity of change logs and bug reports with cosine similarity on tf-idf vectors,
learning a threshold for true links. Nguyen et al. exploited commit and issue tracker metadata in MLink [36]
to improve recall over ReLink. They evaluated MLink on the Apache Commons corpus, making it the de facto
standard. ReLink and MLink irst consider only commit data to form an initial set of commit-issue links that

ACM Trans. Softw. Eng. Methodol.

32 • Profir-Petru Pârt,achi, David R. White, and Earl T. Barr

they then ilter. Prechlet and Pepper [42] dispense with the initial commit-only stage, and instead consider both
commit and issue data from the start. They argue this bi-directional inference is more sound. Their BFLinks
proposes two link predictors (based on bug and commit IDs) and a series of ilters to reduce the candidate set of
links.

Prior toA-m, Li et al.was the state of the art. RCLinker [23] further improves recall. Section 6 details RCLinker’s
realisation. RCLinker relies on ChangeScribe [24] to produce textual descriptions of commits, especially those
that lack commit messages. PRs have their own message and aggregate multiple commits and their messages.
This fact alleviates the problem of sparse commit descriptions for A-m. Both tools would beneit from better PR
summarisation and description. Liu et al. [27] propose a tool, based on a bidirectional RNN with a copy network,
to tackle this task.

Sun et al. [53] used non-source iles in commits for commit-issue link inference. They argue that these iles are
important for capturing developer intent. They use the standard heuristics, such as checking for camelCase or
snake_case, to determine the relevancy of a non-source ile in a commit. As is conventional, they implement these
heuristics as regexes. They use the resulting set of non-source iles together with the co-committed source iles
to compute textual features. They scan a preset and ixed list of the similarity thresholds to ind the maximum
F1-score where Recall is at least 0.80. The procedure raises two unanswered questions. First, how did the authors
determine the threshold granularity? Second, how does training FRLink on F1-score for a task whose performance
is measured in terms of F1-score avoid overitting? They report these choices allow FRLink to improve Recall
over previous work while matching or improving F1-score.

Sun et al. evaluate FRLink on a new corpus of GitHub projects. This corpus difers from the Apache corpus used
in prior work in the conventions governing commit messages: Apache messages tend to be descriptive [2], while
FRLink’s GitHub sample tends to contain exact matches, because copying issue text is common practice [46].
Sun et al. do not investigate the efect of this difering practice on their results. They specify their corpus in
suicient detail to reconstruct it. FRLink, the tool, however, is not available. When we tried to reproduce FRLink,
using its description in Sun et al.’s paper, we were unable to reproduce the reported results. We contacted the
authors for help explaining and correcting our reproduction without response. More recently, Sun et al. [52]
treat existing links as labels and reformulate the missing link problem into a semi-supervised problem. As
Bachmann et al. found, existing links are biased; Sun et al. do not discuss how they coped with this bias. They
report that their solution, PULink, outperforms FRLink on FRLink’s corpus. Like FRLink, PULink is not available.
Ruan et al. [46] empirically studied the state of commit-issue linking on GitHub Java projects and found

only 42.2% to be linked. They propose DeepLink, a neural approach to the missing links problem. DeepLink
trains a text embedding for non-source artefacts and a code embedding for source artefacts using the skip-gram
model [32, 33], then passes each of these embeddings separately through an LSTM layer to obtain the inal vector
representations. They use cosine similarity to compare the vectors, choosing the maximum similarity to represent
the score of the commit-issue link. They show an improvement over FRLink in terms of F1-score, and further
show that pre-processing heuristics similar to previous work, such as ReLink [60] or MLink [36], help DeepLink
achieve a higher F1-score. They also spot that the FRLink corpus had commit logs and issue titles that are exact
matches, introducing bias in the dataset which Ruan et al. handle, while FRLink does not. Since they did not
evaluate DeepLink on Apache Commons or against RCLinker and DeepLink is not available, we do not know its
performance relative to RCLinker.

Rath et al. [44] also tackle the missing link problem, from within the requirement engineering community and
without referencing the line of work stemming from Bachmann et al.. The missing link inference work maps
textural features to vector space model over unigrams. Rath et al. opt instead for an n-gram model. They are
the irst to perform feature selection, using Weka’s feature auto-selection. They report promising results on a
diferent dataset than Apache Commons. As Section 6 notes, Rath et al.’s work is diicult to compare with A-m,
because it uses temporal features, such as a predicate that is true when a commit falls between issue’s creation

ACM Trans. Softw. Eng. Methodol.

Aide-mémoire • 33

and its resolution. In A-m’s online setting, this predicate will sometimes be deined in terms of an event that is in
the future relative to the present query.

A-m is the irst tool that solves issue-PR link prediction online. Unlike previous work, we do not rely on a change
summariser to produce a natural language description of source code changes; we exploit the PR description
instead. As Section 3.2 details, using A-m requires only installing a lightweight Chrome plugin or a precommit
script. It can smoothly integrate into a developer’s worklow because it intervenes when a developer submits a
commit or closes an issue Ð when link suggestions are pertinent. Since developers approve our suggestions and
silence is merely the status quo, we must avoid distracting them with incorrect suggestions. Thus, A-m difers
from previous work in valuing precision over recall.

9.4 Community Smells

Another line of work focuses on social debt [55]. This encompasses unforeseen project costs due to a suboptimal
development processes. Such organisational issues can be a root cause for missing links, the process artefacts
that Aide-mémoire semi-automatically maintains to reduce technical debt. To detect community structures that
can lead to social debt, akin to code smells [10], Tamburri et al. propose community smells [54]. The impact of
community smells is not limited to social debt. Indeed, Palomba et al. [38] show how certain community smells,
such as lone wolf (committing code without regard to the community opinion) or black cloud (obfuscation by
communication overload) strongly predict code smell intensity. Later, Catolino et al. [8] study practitioners’
perception of community smells. They determine which, if any, community smells that practitioners see as
relevant and formulate a ield guide that documents which strategies the practitioners employ to łrefactorž a
community smell. Aide-mémoire, by contending with process technical debt, can help mitigate issues that may
arise due to lone wolves or disengaged participants in a project. As A-m focuses on technical debt and traceability,
community smells will require dedicated tooling that directly tackles them as Catolino et al. [8] proposed.

10 CONCLUSION AND FUTURE WORK

Related work has either treated missing links as an oline problem or has relied on invasive instrumentation
across a range of developer activities. We present an alternative in the form of Aide-mémoire, the irst tool to
solve the problem of missing links in an online setting. Exploiting existing metadata associated with PRs, such as
textual descriptions allows us to avoid reliance on more terse commit message or commit summarisation when
these are absent. We also generalise across programming languages and project sizes.

We ind that Aide-mémoire generalises well across a much larger range of corpora than previously considered,
and outperforms a retargeted version of a state-of-the-art oline tool. Crucially, it does not require customisation
of toolchains or invasive monitoring of developer activity. As Aide-mémoire incrementally improves linking
within a project, it will help to reduce the noise in its own training data; we therefore expect its performance to
improve over time as a project uses it.
A future version could interact with Eifel by Ståhl et al. [50] by emitting the appropriately formatted JSON

whenever a developer selects to record a link from a PR to an Issue. This would alleviate issues with the current
systems, including A-m, where developers enter these manually in a system outside continuous integration
frameworks. This manual practice sufers from inconsistent formats, forgetfulness and other human errors that
automation can solve.

Acknowledgements. The authors acknowledge the use of the UCL Legion High Performance Computing Facility
(Legion@UCL), and associated support services, in the completion of this work. This research is supported by the
EPSRC Ref. EP/J017515/1. We would also like to thank Laurie Tratt for sharing his insight into the management
of issues and pull requests within Open Source projects.

ACM Trans. Softw. Eng. Methodol.

34 • Profir-Petru Pârt,achi, David R. White, and Earl T. Barr

REFERENCES
[1] Agile Alliance. 2019. Agile Alliance: Backlog reinement. https://www.agilealliance.org/glossary/backlog-grooming/. Accessed:

2019-11-26.
[2] Apache. 2020. Coding and Commit Conventions. https://subversion.apache.org/docs/community-guide/conventions.html. Accessed:

2020-07-09.
[3] Hazeline U Asuncion, Arthur U Asuncion, and Richard N Taylor. 2010. Software traceability with topic modeling. 2010 ACM/IEEE 32nd

International Conference on Software Engineering 1 (2010), 95ś104. https://doi.org/10.1145/1806799.1806817
[4] Adrian Bachmann, Christian Bird, Foyzur Rahman, Premkumar Devanbu, and Abraham Bernstein. 2010. The missing links. Proceedings

of the eighteenth ACM SIGSOFT international symposium on Foundations of software engineering - FSE ’10 (2010), 97. https://doi.org/10.
1145/1882291.1882308

[5] Christian Bird, Adrian Bachmann, Eirik Aune, John Dufy, Abraham Bernstein, Vladimir Filkov, and Premkumar Devanbu. 2009. Fair
and Balanced?: Bias in Bug-Fix Datasets. Proc. ESEC/FSE (2009), 121ś130. https://doi.org/10.1145/1595696.1595716

[6] Markus Borg, Per Runeson, and Anders Ardö. 2014. Recovering from a decade: a systematic mapping of information retrieval approaches
to software traceability. Empirical Software Engineering 19, 6 (01 Dec 2014), 1565ś1616. https://doi.org/10.1007/s10664-013-9255-y

[7] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,
Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. Advances in neural information processing systems 33
(2020), 1877ś1901.

[8] Gemma Catolino, Fabio Palomba, Damian A Tamburri, Alexander Serebrenik, and Filomena Ferrucci. 2020. Refactoring community
smells in the wild: the practitioner’s ield manual. In Proceedings of the acm/ieee 42nd international conference on software engineering:

Software engineering in society. 25ś34.
[9] Jane Cleland-Huang, Olly Gotel, Jane Hufman Hayes, Patrick Mäder, and Andrea Zisman. 2014. Software Traceability: Trends and

Future Directions. FOSE 2014: Proceedings of the on Future of Software Engineering (36th ICSE 2014) (2014), 55ś69. https://doi.org/10.
1145/2593882.2593891

[10] Martin Fowler, K Beck, J Brant, W Opdyke, and D Roberts. 1999. Refactoring: Improving the Design of Existing Code. ISBN 0201485672.
[11] GitHub. 2016. GitHub Octoverse 2016. https://octoverse.github.com/. Accessed: 2017-08-07.
[12] GitHub. 2017. GitHub: Autolinked references and URLs. https://help.github.com/articles/autolinked-references-and-urls/. Accessed:

2017-08-20.
[13] Georgios Gousios and D. Spinellis. 2012. GHTorrent: Github’s data from a irehose. In 2012 9th IEEE Working Conference on Mining

Software Repositories (MSR). IEEE, 12ś21. https://doi.org/10.1109/MSR.2012.6224294
[14] Georgios Gousios and D. Spinellis. 2017. Google Cloud Public Table of GitHub Projects. https://bigquery.cloud.google.com/dataset/

ghtorrent-bq:ght. Contents from 2.9M public, open source licensed repositories on GitHub; Accessed: 2017-08-10.
[15] Mark Hall, Eibe Frank, Geofrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H. Witten. 2009. The WEKA Data Mining

Software: An Update. SIGKDD Explor. Newsl. 11, 1 (Nov. 2009), 10ś18. https://doi.org/10.1145/1656274.1656278
[16] Donald R. Hedeker and Robert D. Gibbons. 2006. Longitudinal Data Analysis. WileyInterscience.
[17] JIRA. 2017. JIRA: Link JIRA issues to Conluence pages automatically. https://www.atlassian.com/blog/conluence/link-jira-issues-to-

conluence-pages-automatically. Accessed: 2017-08-20.
[18] JIRA. 2017. JIRA: Rest API Examples. https://developer.atlassian.com/server/jira/platform/jira-rest-api-examples/. Accessed: 2021-05-14.
[19] Eric Jones, Travis Oliphant, Pearu Peterson, et al. 2001ś. SciPy: Open source scientiic tools for Python. http://www.scipy.org/ [Online;

accessed 31.07.2017].
[20] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M. German, and Daniela Damian. 2014. The promises and

perils of mining GitHub. In Proc. 11th Work. Conf. Min. Softw. Repos. - MSR 2014. ACM Press, New York, New York, USA, 92ś101.
https://doi.org/10.1145/2597073.2597074

[21] Max Kuhn and Johnson Kjell. CRC Press. Feature Engineering and Selection: a Practical Approach for Predictive Models. 2019.
[22] Balaji Lakshminarayanan, Daniel M Roy, and Yee Whye Teh. 2014. Mondrian forests: Eicient online random forests. In Advances in

neural information processing systems. 3140ś3148.
[23] Tien Duy B Le, Mario Linares-Vásquez, David Lo, and Denys Poshyvanyk. 2015. RCLinker: Automated Linking of Issue Reports and

Commits Leveraging Rich Contextual Information. In IEEE International Conference on Program Comprehension, Vol. 2015-Augus. IEEE,
36ś47. https://doi.org/10.1109/ICPC.2015.13

[24] Mario Linares-Vasquez, Luis Fernando Cortes-Coy, Jairo Aponte, and Denys Poshyvanyk. 2015. ChangeScribe: A Tool for Automatically
Generating Commit Messages. Proceedings - International Conference on Software Engineering 2 (2015), 709ś712. https://doi.org/10.1109/
ICSE.2015.229

[25] Linux Kernel. 2020. Linux Kernel Commit Message Practice. https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/
Documentation/process/submitting-patches.rst?id=bc7938deaca7f474918c41a0372a410049bd4e13#n664. Accessed: 2020-06-19.

ACM Trans. Softw. Eng. Methodol.

https://www.agilealliance.org/glossary/backlog-grooming/
https://subversion.apache.org/docs/community-guide/conventions.html
https://doi.org/10.1145/1806799.1806817
https://doi.org/10.1145/1882291.1882308
https://doi.org/10.1145/1882291.1882308
https://doi.org/10.1145/1595696.1595716
https://doi.org/10.1007/s10664-013-9255-y
https://doi.org/10.1145/2593882.2593891
https://doi.org/10.1145/2593882.2593891
https://octoverse.github.com/
https://help.github.com/articles/autolinked-references-and-urls/
https://doi.org/10.1109/MSR.2012.6224294
https://bigquery.cloud.google.com/dataset/ghtorrent-bq:ght
https://bigquery.cloud.google.com/dataset/ghtorrent-bq:ght
https://doi.org/10.1145/1656274.1656278
https://www.atlassian.com/blog/confluence/link-jira-issues-to-confluence-pages-automatically
https://www.atlassian.com/blog/confluence/link-jira-issues-to-confluence-pages-automatically
https://developer.atlassian.com/server/jira/platform/jira-rest-api-examples/
http://www.scipy.org/
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.1109/ICPC.2015.13
https://doi.org/10.1109/ICSE.2015.229
https://doi.org/10.1109/ICSE.2015.229
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/process/submitting-patches.rst?id=bc7938deaca7f474918c41a0372a410049bd4e13#n664
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/process/submitting-patches.rst?id=bc7938deaca7f474918c41a0372a410049bd4e13#n664

Aide-mémoire • 35

[26] Chen Liu, Jinqiu Yang, Lin Tan, and Munawar Haiz. 2013. R2Fix: Automatically generating bug ixes from bug reports. Ph. D. Dissertation.

University of Waterloo. https://doi.org/10.1109/ICST.2013.24

[27] Zhongxin Liu, Xin Xia, Christoph Treude, David Lo, and Shanping Li. 2019. Automatic Generation of Pull Request Descriptions. arXiv
preprint arXiv:1909.06987 (2019).

[28] Walid Maalej and Hans-Jörg Happel. 2010. Can Development Work Describe Itself? 7th IEEE Working Conference on Mining Software

Repositories (MSR 2010) (2010), 191ś200. https://doi.org/10.1109/MSR.2010.5463344
[29] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. 2008. Introduction to Information Retrieval. Cambridge University

Press, New York, NY, USA.
[30] Thais Mayumi Oshiro, Pedro Santoro Perez, and José Baranauskas. 2012. How Many Trees in a Random Forest? Lecture notes in computer

science 7376 (07 2012).
[31] QingMi and Jacky Keung. 2016. An empirical analysis of reopened bugs based on open source projects. Proceedings of the 20th International

Conference on Evaluation and Assessment in Software Engineering - EASE ’16 (2016), 1ś10. https://doi.org/10.1145/2915970.2915986
[32] Tomas Mikolov, Kai Chen, Greg Corrado, and Jefrey Dean. 2013. Eicient estimation of word representations in vector space. arXiv

preprint arXiv:1301.3781 (2013).
[33] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jef Dean. 2013. Distributed representations of words and phrases and

their compositionality. In Advances in neural information processing systems. 3111ś3119.
[34] Sridhar Nerur, RadhaKanta Mahapatra, and George Mangalaraj. 2005. Challenges of migrating to agile methodologies. Commun. ACM

48, 5 (2005), 72ś78.
[35] C. Neumuller and P. Grunbacher. 2006. Automating Software Traceability in Very Small Companies: A Case Study and Lessons Learne.

In 21st IEEE/ACM International Conference on Automated Software Engineering (ASE’06). 145ś156. https://doi.org/10.1109/ASE.2006.25
[36] Anh Tuan Nguyen, Tung Thanh Nguyen, Hoan Anh Nguyen, and Tien N. Nguyen. 2012. Multi-layered approach for recovering links

between bug reports and ixes. Proceedings of the ACM SIGSOFT 20th International Symposium on the Foundations of Software Engineering

- FSE ’12 (2012), 1. https://doi.org/10.1145/2393596.2393671
[37] Peter O’Hearn. 2020. ICSE 2020 Keynote: Formal Reasoning and the Hacker Way. [Online: https://youtu.be/bb8BnqhY3Ss?t=2599].
[38] Fabio Palomba, Damian Andrew Tamburri, Francesca Arcelli Fontana, Rocco Oliveto, Andy Zaidman, and Alexander Serebrenik. 2018.

Beyond technical aspects: How do community smells inluence the intensity of code smells? IEEE transactions on software engineering

47, 1 (2018), 108ś129.
[39] Proir-Petru Pârt,achi, David R. White, and Earl T. Barr. 2020. Aide-mémoire: Accurate Issue Links at Pull Request submission.

https://github.com/PPPI/a-m/. Accessed: 2020-07-13.
[40] Proir-Petru Pârt,achi, David R. White, and Earl T. Barr. 2020. Datasets as pickled python objects. https://igshare.com/s/

83c448eb518b3d04651f. Accessed: 2020-02-25.
[41] M.F. Porter. 1980. An algorithm for suix stripping. , 130ś137 pages. https://doi.org/10.1108/eb046814 arXiv:/dx.doi.org/10.1108/BIJ-10-

2012-0068 [http:]
[42] Lutz Prechelt and Alexander Pepper. 2014. Blinks: Reliable Bugix Links via Bidirectional References and Tuned Heuristics. International

scholarly research notices 2014 (2014).
[43] Shivani Rao and Avinash Kak. 2011. Retrieval from software libraries for bug localization. In Proceeding of the 8th working conference on

Mining software repositories - MSR ’11. 43. https://doi.org/10.1145/1985441.1985451
[44] Michael Rath, Jacob Rendall, Jin L. C. Guo, Jane Cleland-Huang, and Patrick Maeder. 2018. Traceability in the Wild: Automatically

Augmenting Incomplete Trace Links. arXiv:arXiv:1804.02433
[45] Radim Řehůřek and Petr Sojka. 2010. Software Framework for Topic Modelling with Large Corpora. In Proceedings of the LREC 2010

Workshop on New Challenges for NLP Frameworks. ELRA, Valletta, Malta, 45ś50. http://is.muni.cz/publication/884893/en.
[46] Hang Ruan, Bihuan Chen, Xin Peng, and Wenyun Zhao. 2019. DeepLink: Recovering issue-commit links based on deep learning. Journal

of Systems and Software 158 (2019), 110406.
[47] Scikit-learn. 2020. Recursive Feature Elimination: SciKit Implementation. https://scikit-learn.org/stable/modules/generated/sklearn.

feature_selection.RFE.html. Accessed: 2020-06-17.
[48] Scikit-learn. 2020. Time-Series Split. https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.TimeSeriesSplit.html.

Accessed: 2021-05-14.
[49] Emad Shihab, Akinori Ihara, Yasutaka Kamei, Walid M. Ibrahim, Masao Ohira, Bram Adams, Ahmed E. Hassan, and Ken Ichi Matsumoto.

2013. Studying re-opened bugs in open source software. Vol. 18. 1005ś1042 pages. https://doi.org/10.1007/s10664-012-9228-6
[50] Daniel Ståhl, Kristofer Hallén, and Jan Bosch. 2017. Achieving traceability in large scale continuous integration and delivery deployment,

usage and validation of the eifel framework. Empir. Softw. Eng. 22, 3 (2017), 967ś995. https://doi.org/10.1007/s10664-016-9457-1
[51] Eliza Strickland. 2022. Andrew Ng: Unbiggen AI. https://spectrum.ieee.org/andrew-ng-data-centric-ai. Accessed: 2022-05-26.
[52] Y. Sun, C. Chen, Q. Wang, and B. Boehm. 2017. Improving missing issue-commit link recovery using positive and unlabeled data. In 2017

32nd IEEE/ACM International Conference on Automated Software Engineering (ASE). 147ś152. https://doi.org/10.1109/ASE.2017.8115627

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1109/ICST.2013.24
https://doi.org/10.1109/MSR.2010.5463344
https://doi.org/10.1145/2915970.2915986
https://doi.org/10.1109/ASE.2006.25
https://doi.org/10.1145/2393596.2393671
https://youtu.be/bb8BnqhY3Ss?t=2599
https://github.com/PPPI/a-m/
https://figshare.com/s/83c448eb518b3d04651f
https://figshare.com/s/83c448eb518b3d04651f
https://doi.org/10.1108/eb046814
https://arxiv.org/abs//dx.doi.org/10.1108/BIJ-10-2012-0068
https://arxiv.org/abs//dx.doi.org/10.1108/BIJ-10-2012-0068
https://doi.org/10.1145/1985441.1985451
https://arxiv.org/abs/arXiv:1804.02433
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.TimeSeriesSplit.html
https://doi.org/10.1007/s10664-012-9228-6
https://doi.org/10.1007/s10664-016-9457-1
https://spectrum.ieee.org/andrew-ng-data-centric-ai
https://doi.org/10.1109/ASE.2017.8115627

36 • Profir-Petru Pârt,achi, David R. White, and Earl T. Barr

[53] Yan Sun, Qing Wang, and Ye Yang. 2017. FRLink: Improving the recovery of missing issue-commit links by revisiting ile relevance.
Information and Software Technology 84 (2017), 33ś47. https://doi.org/10.1016/j.infsof.2016.11.010

[54] Damian A Tamburri, Rick Kazman, and Hamed Fahimi. 2016. The architect’s role in community shepherding. IEEE Software 33, 6 (2016),
70ś79.

[55] Damian A Tamburri, Philippe Kruchten, Patricia Lago, and Hans van Vliet. 2013. What is social debt in software engineering?. In 2013

6th International Workshop on Cooperative and Human Aspects of Software Engineering (CHASE). IEEE, 93ś96.
[56] Laurie Tratt. 2018. Personal Communication with Laurie Tratt. Online.
[57] Michele Tufano, Gabriele Bavota, Denys Poshyvanyk, Massimiliano Di Penta, Rocco Oliveto, and Andrea De Lucia. 2016. An empirical

study on developer-related factors characterizing ix-inducing commits. Journal of Software: Evolution and Process 26, 12 (aug 2016),
1172ś1192. https://doi.org/10.1002/smr.1797 arXiv:1408.1293

[58] Ming Wen, Rongxin Wu, and Shing-chi Cheung. 2016. Locus : Locating Bugs from Software Changes. 31st IEEE/ACM International

Conference on Automated Software Engineering (ASE 2016) (2016), 262ś273. https://doi.org/10.1145/2970276.2970359
[59] Renjie Wu and Eamonn J. Keogh. 2020. Current Time Series Anomaly Detection Benchmarks are Flawed and are Creating the Illusion

of Progress. arXiv:2009.13807 [cs.LG]
[60] Rongxin Wu, Hongyu Zhang, Sunghun Kim, and Shing-Chi Cheung. 2011. ReLink: Recovering Links Between Bugs and Changes.

Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foundations of Software Engineering (2011), 15ś25.
https://doi.org/10.1145/2025113.2025120

[61] Klaus Changsun Youm, June Ahn, and Eunseok Lee. 2017. Improved bug localization based on code change histories and bug reports.
Information and Software Technology 82 (2017), 177ś192. https://doi.org/10.1016/j.infsof.2016.11.002

ACM Trans. Softw. Eng. Methodol.

https://doi.org/10.1016/j.infsof.2016.11.010
https://doi.org/10.1002/smr.1797
https://arxiv.org/abs/1408.1293
https://doi.org/10.1145/2970276.2970359
https://arxiv.org/abs/2009.13807
https://doi.org/10.1145/2025113.2025120
https://doi.org/10.1016/j.infsof.2016.11.002

	Abstract
	1 Introduction
	2 Motivating Example
	3 Aide-mémoire
	3.1 Model Learning
	3.2 Deployment

	4 Exploring the Feature Space of Issue-PR Links
	4.1 Feature Space Construction
	4.2 Feature Selection

	5 Experimental Set-up for Evaluating Aide-mémoire
	5.1 A Tale of Two Corpora: Java and Multilingual
	5.2 Weak Labelling
	5.3 Measuring Performance
	5.4 The Longitudinal Evaluation of Aide-mémoire
	5.5 Hyperparameters

	6 Reproducing RCLinker, the State of the Art in Offline Commit-Issue Suggestion
	6.1 Constructing RCRep
	6.2 Benchmarking Aide-mémoire Performance with RCRep

	7 Evaluating Aide-mémoire on the Online PR-Issue Linking Problem
	7.1 The Dismal State of Issue-PR Linking on GitHub
	7.2 The Quality of Aide-mémoire's Suggestions
	7.3 Generalising across Languages and Project Sizes
	7.4 Resistance to Noise
	7.5 The Importance of Mondrian Forests
	7.6 Threats to Validity

	8 Qualitative Analysis of Aide-mémoire's Suggestions
	8.1 Aide-mémoire's Suggestions
	8.2 Aide-mémoire's Potential Impact

	9 Related Work
	9.1 Traceability
	9.2 Modern Development
	9.3 Missing Links
	9.4 Community Smells

	10 Conclusion and Future Work
	References

